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Towards Classical Field Theory



The Inverse Square Law

▶ Gravitational force:

Fm = −G
Mm

r2

▶ Electrostatic force:

Fe =
1

4πϵ0

Qeqe
r2

▶ Magnetic force:

Fb =
µ0

4π

Qbqb
r2



Formal Analogies Between the Gravitational and
Electrostatic Forces

Gravitation Static electricity

Newton’s second law ai = −∂iV︸ ︷︷ ︸
−∇⃗V

E i = −∂ iϕ︸ ︷︷ ︸
−∇⃗ϕ

Gauss’ law
3∑

i=1

∇ia
i

︸ ︷︷ ︸
∇⃗·a⃗

= −4πGρm

3∑
i=1

∇iE
i

︸ ︷︷ ︸
∇⃗·a⃗

= 1
ϵ0
ρe

Poisson’s equation
3∑

i=1

∇i∂
iV︸ ︷︷ ︸

∇2V

= 4πGρm

3∑
i=1

∇i∂
iϕ︸ ︷︷ ︸

∇2ϕ

= − 1
ϵ0
ρe



Lagrangian Mechanics

δq (t)

t1 t2

Q (t1)

Q (t2)

t

Q
(t
)

q (t)

Q (t)

▶ Nature ’selects’ the unique on-shell trajectory q (t) given the
boundary conditions (t1,Q (t1)) and (t2,Q (t2)) for a system.

Q (t)︸ ︷︷ ︸
Off-shell

= q (t)︸︷︷︸
On-shell

+ δq (t)︸ ︷︷ ︸
Variation

δq (t1) = δq (t2) = 0



▶ Each trajectory Q (t) between the endpoints is associated
with a corresponding number called the action.

S [Q (t)] (t1, t2) =

∫ t2

t1

dt L
(
Q (t), Q̇ (t), t

)
The integrand L

(
Q (t), Q̇ (t), t

)
is known as the Lagrangian

of the system being modelled and encodes the dynamics of
the system.

▶ In general, the action S maps Q (t) to a real number
determined by the above integral. Therefore, it is a functional,
i.e. a higher-order function which takes in infinite values of
the form {(t,Q (t)) : t ∈ R} and spits out a real.

S :

RR → R

Q (t) 7→
∫ t2

t1

dt L
(
Q (t), Q̇ (t), t

)



Principle of Stationary Action

Lagrange’s principle of stationary action

Suppose we vary q (t) about its on-shell evolution as,
q (t) → q (t) + δq (t). Then, the variation in the action satisfies,

δS = O
(
δq2

)
Corollary (First-order approximation)

For very small δq (t) i.e.,

∀ δq (t) = lim
ϵ→0

ϵη (t) : η (t1) = η (t2) = 0 :

δS = O
(
��ϵ
2 (η (t))2

)
= 0



Euler-Lagrange Equation

Lemma (Fundamental lemma of calculus of variations)

The former is possible if and only if the latter is,

∀ δq :

∫ t2

t1

dt δq f (q, q̇, t) = 0

⇐⇒ ∀ t ∈ (t1, t2) : f (q, q̇, t) = 0

Theorem
An on-shell q (t) obeying the principle of stationary action for a
given L (q, q̇, t) must also obey the Euler-Lagrange equation of
motion:

∂L

∂q︸︷︷︸
Generalized force

=
d

dt

∂L

∂q̇︸︷︷︸
Conjugate momentum

=
dp

dt



Proof.

δS = 0 [Principle of stationary action]

δ

∫ t2

t1

dt L (q, q̇, t) = 0∫ t2

t1

dt δL (q, q̇, t) = 0 [Additivity of variations]∫ t2

t1

dt

[
δq

∂L

∂q
+ δq̇

∂L

∂q̇
+��δt

∂L

∂t

]
= 0 [Chain rule for variations]∫ t2

t1

dt

[
δq

∂L

∂q
+ ˙(δq)

∂L

∂q̇

]
= 0 [Commutativity of derivatives]∫ t2

t1

dt δq
∂L

∂q
+

∫ t2

t1

dt ˙(δq)
∂L

∂q̇
= 0



Proof.

∫ t2

t1

dt δq
∂L

∂q
+

∂L

∂q̇

∫ t2

t1

dt ˙(δq)−
∫ t2

t1

dt

[∫
dt ˙(δq)

]
d

dt

∂L

∂q̇
= 0

[Integration by parts]∫ t2

t1

dt δq
∂L

∂q
+

∂L

∂q̇�
�[δq]t2t1 −

∫ t2

t1

dt δq
d

dt

∂L

∂q̇
= 0

[δq (t1) = δq (t2)]

∀ δq :

∫ t2

t1

dtδq

(
∂L

∂q
− d

dt

∂L

∂q̇

)
= 0

⇐⇒ ∂L

∂q
− d

dt

∂L

∂q̇
= 0

⇐⇒ ∂L

∂q
− dp

dt
= 0 □

[Fundamental lemma of the calculus of variations]



Noether’s Theorem

Theorem (Noether’s first theorem)

If the action S [q (t)] remains invariant under perturbations of the
following form,

q → q + δq

then the following quantity is conserved,

j = p δq

dj

dt
= 0



Proof.

δL =
∂L

∂q
δq +

∂L

∂q̇
δq̇

= ṗδq + pδq̇ [Euler-Lagrange equation]

=
d

dt
(pδq)

But δL = 0

=⇒ d

dt
(pδq) = 0 □

Example

If S [q (t)] is symmetric (i.e. conserved) under a small
time-independent translation q → q + ϵ, we obtain the invariant
j = pϵ. Since dj

dt = 0, dϵdt = 0, we get dp
dt = 0.



Classical Mechanics

▶ The Lagrangian for classical mechanics is of the form,

L (q, q̇, t) = T (q̇)− V (q)

=
1

2
mg q̇2 − V (q)

=
1

2
mv2 − V (q)

▶ The equation of motion obtained by applying the
Euler-Lagrange equation to the above Lagrangian is,

d

dt
(mv) +

∂V

∂q
= 0

This is Newton’s second law. If the entire system concerned is
symmetric under small translations on q, we have ∂V

∂q = 0

implying d
dt (mv) = 0. This is Newton’s third law.



Classical Field Theory

▶ A classical field is a tensor field on spacetime (which is a
pseudo-Riemannian manifold obeying dynamical field
equations such as the Einstein field equations).
Therefore, a classical field is some rank (p, q) tensor
ϕ
µ1...µp

ν1...νq (x
α) at each point xα in space and time with

α ∈ (0, 1, 2, 3).

▶ A classical field obeys the following principles:

1. Principle of stationary action
2. Local Lorentz invariance
3. Locality
4. Gauge invariance

▶ The simplest classical field theory is that of rank (0, 0) tensor
fields i.e. scalar fields ϕ (xα), in a flat spacetime M. We will
study such fields in the following slides.



Principle of Stationary Action for Classical Fields

x
y

ϕ

ϕ
(
ct, x i

)

▶ To construct the action for a particle, we integrated its
Lagrangian between endpoints in time. A field such as ϕ (xα),
however, lives in space and time. Therefore, its action is a
volume integral of a Lagrangian density L, in a 4-dimensional
region of spacetime Ω ⊂ M,

S [ϕ (xα)] =

∫
Ω
d4x L (ϕ (xα) , ∂µϕ (xα) , xν)



▶ The Lagrangian density is so-called as it looks like a
Lagrangian (integrable over some time interval Ω(1)) when
integrated over a region of space Ω(3):

L (ϕ (xα) , ∂µϕ (xα) , xν) =

∫
Ω(3)

d3x L (ϕ (xα) , ∂µϕ (xα) , xν)

S [ϕ (xα)] =

∫
Ω
d4x L (ϕ (xα) , ∂µϕ (xα) , xν)

=

∫
Ω(1)

cdt L (ϕ (xα) , ∂µϕ (xα) , xν)

▶ The principle of stationary action for fields states that for
small variations δϕ of a field ϕ in its on-shell configuration,
the action remains stationary,

δS = 0



Euler-Lagrange Equation for Classical Fields
Lemma (Fundamental lemma of multivariable calculus of
variations)

∀ δϕ :

∫
Ω
d4xδϕ f (ϕ, ∂µϕ, x

ν) = 0

⇐⇒ ∀ xα ∈ Ω\∂Ω : f (ϕ, ∂µϕ, x
ν) = 0

Einstein summation convention
Dummy indices, i.e. pairs of upper and lower tensor indices, are
implicitly summed over.

Example

AµB
µ =

3∑
µ=0

AµB
µ



Theorem
A field ϕ obeys the principle of stationary action if and only if it
also satisfies,

∂L
∂ϕ

= ∇µ
∂L

∂ (∂µϕ)︸ ︷︷ ︸
Conjugate momentum tensor

= ∇µπ
µ

Proof.

δS = 0 [Principle of stationary action]

δ

∫
Ω
d4x L = 0∫

Ω
d4x δL = 0 [Additivity of variations]



∫
Ω
d4x

δϕ∂L∂ϕ + δ (∂µϕ)
∂L

∂ (∂µϕ)︸ ︷︷ ︸
πµ

+��δxµ∂µL

 = 0

[Multivariable chain rule for variations]∫
Ω
d4x

[
δϕ

∂L
∂ϕ

+ (∂µδϕ)π
µ

]
= 0

[Commutativity of variations and covariant derivatives]∫
Ω
d4x δϕ

∂L
∂ϕ

+ πµ

∫
Ω
d4x ∂µδϕ︸ ︷︷ ︸

Constant surface term

−
∫
Ω
d4x

[∫
d4x ∂µδϕ

]
∇µπ

µ = 0

[Volume integration by parts]



Using Stokes’ theorem, the constant surface term can be set to 0.
We then find,

∫
Ω
d4x δϕ

∂L
∂ϕ

−
∫
Ω
d4x δϕ∇µπ

µ = 0∫
Ω
d4x δϕ

(
∂L
∂ϕ

−∇µπ
µ

)
= 0

∂L
∂ϕ

−∇µπ
µ = 0

⇐⇒ ∂L
∂ϕ

−∇µ
∂L

∂ (∂µϕ)
= 0 □

[Fundamental lemma of multivariable calculus of variations]



Noether’s Theorem for Classical Fields

Theorem (Field-theoretic Noether’s theorem)

If under a small perturbation xα → xα + δxα, the action of a field
ϕ remains invariant, then the following quantity is conserved i.e.
has a vanishing divergence,

jµ = πµδϕ− Lδxµ

∇µj
µ = 0



Proof.

δL =
∂L
∂ϕ

δϕ+
∂L

∂ (∂µϕ)
δ (∂µϕ)

= (∇µπ
µ) δϕ+ πµ∂µδϕ [E-L equation]

= ∇µ (π
µδϕ)

∴ (∇µL) δxµ = ∇µ (π
µδϕ)

=⇒ ∇µ (π
µδϕ− Lδxµ) = 0

⇐⇒ ∇µj
µ = 0 □



Energy-momentum Tensor

Corollary (Conservation of energy-momentum tensor)

Dividing both sides of the above equation by δxν , we find an
explicit conserved tensor called the energy-momentum tensor,

Tµ
ν = πµ∂νϕ− δµνL

Tµν = ηνα︸︷︷︸T ν
α

Inverse Minkowski metric

= ηνα
(
πµ∂αϕ− δµαL

)
= πµ∂νϕ− ηµνL

∇µT
µ
ν = ∇µT

µν = 0



▶ The energy-momentum tensor Tµν physically represents the
flux of πµ through the surface form

∧
α ̸=ν

dxα. This

corresponds to the flow of the field’s
energy(µ = 0)/momentum(µ = 1, 2, 3) along xν .

▶ But if we have flow of πµ in the xν direction, then it implies
an energy/momentum in the xν direction. The world line
correpsonding to this flow must intersect with the former
through a hypersurface of simulteinity, giving rise to equal
T νµ.

▶ Thus, the energy-momentum tensor, being a geometric object
with the mentioned physical meaning (motivated by particle
and continuum dynamics), turns out to be symmetric,

Tµν = T νµ



Klein-Gordon Theory



Klein-Gordon Lagrangian

▶ The classical-field theoretic construction of Klein-Gordon
theory begins by asking which Lagrangian yields a symmetric
energy-momentum tensor. Such a theory, by virtue of
respecting the physical meaning of the energy-momentum
tensor, successfully describes many ’physically valid’ systems.

▶ It turns out that the Klein-Gordon theory is deeply rooted in
nature. In quantum mechanics, it is the theory for spin-0
particles. In quantum electrodynamics, the Klein-Gordon
theory can be used to construct that of Dirac spinor fields,
which describe all massive spin-1/2 particles such as electrons.



▶ Recall the energy-momentum tensor for a scalar field ϕ and its
symmetry,

Tµν = πµ∂νϕ− ηµνL
Tµν = T νµ

where πµ =
∂L

∂ (∂µϕ)
. Thus,

πµ∂νϕ−���ηµνL = πν∂µϕ−���ηνµL [ηµν = ηνµ]

πµ∂νϕ = πν∂µϕ

▶ The above is true in the most general case when πµ is equal
to ∂µϕ, allowing us to exchange the product of conjugate
momentum πµ and generalized velocity ∂νϕ as above (by
commutativity of component multiplication).



Therefore, we have,

πµ = ∂µϕ

=⇒ ∂L
∂ (∂µϕ)

= ∂µϕ

’Integrating’ over ∂µϕ, we find that the Lagrangian is constrained
to be of the form,

L =
1

2
∂µϕ∂

µϕ− V (ϕ)

▶ This is the Klein-Gordon Lagrangian LKG . Notice that it is
analogous to the Lagrangian for classical mechanics, if we
interpret 1

2∂µϕ∂
µϕ as a kinetic term T (∂µϕ) and V (ϕ) as a

potential term.



Indeed,

πµ =
∂L

∂ (∂µϕ)

=
∂

∂ (∂µϕ)

[
1

2
∂αϕ∂

αϕ− V (ϕ)

]
=

1

2

∂

∂ (∂µϕ)
[∂αϕ∂

αϕ]

= ∂αϕ
∂

∂ (∂µϕ)
∂αϕ

= ∂αϕδµα

= ∂µϕ



Klein-Gordon Equation

▶ Let us find the equation of motion for a Klein-Gordon field by
plugging its conjugate momentum into the Euler-Lagrange
equation:

∇µπ
µ − ∂L

∂ϕ
= 0

=⇒ ∇µ∂
µϕ+

∂V

∂ϕ
= 0

⇐⇒ □ϕ+
∂V

∂ϕ
= 0

▶ This is the celebrated Klein-Gordon equation [for a scalar field
in a potential]. In the absence of a potential, we obtain the
wave equation □ϕ = 0.



▶ For small oscillations of ϕ about local minima of the potential
V (ϕ), only differences in ϕ physically matter. In the series
expansion for ∂V

∂ϕ , we can set a vanishing first power term.
Hence, in the series for V (ϕ), the first power term for ϕ
vanishes, and so do cubic and higher terms,

V (ϕ) =
1

2
m2ϕ2

▶ Plugging the above potential into the Klein-Gordon equation,
we get the Klein-Gordon equation for a scalar field in a
potential whose effects locally vanish:

∇µ∂
µϕ+m2ϕ = 0

▶ This is analogous to Hooke’s law for harmonic oscillators, with
mass assuming the role of the ’spring constant’. That’s no
coincidence – solutions to the above equation are systems of
infinite harmonic oscillators at each point in spacetime!



Gauge Invariance
▶ Classical fields admit the structure of gauge invariance –

wherein different definitions of the field represent the same
physical situation. This happens when the field can encode
more information than the physical system being represented.

Example

In electromagnetism, it is possible to add an arbitrary 4-gradient
∂µs to the electromagnetic 4-potential field Aµ, but get the same
electromagnetic tensor, which encodes the physics,

Aµ → Aµ + ∂µs [Gauge transformation]

Fµν = ∂µAν − ∂νAµ

∴ Fµν → ∂µ (Aν + ∂νs)− ∂ν (Aµ + ∂µs)

= ∂µAν +����∂µ∂νs − ∂νAµ −����∂ν∂µs

= Fµν



▶ In general, we want physics to remain the same under a gauge
transformation ϕ → ϕ̃ where this transformation belongs to
the symmetry group of the gauge theory in question.
This makes us expect that the Euler-Lagrange equation
should stay the same under such a transformation – except it
does not!
This is fixed by allowing gauge structure and modifying the
Euler-Lagrange equation by replacing usual covariant
derivatives with gauge covariant derivatives (= covariant
derivatives + gauge connection term),

∂µϕ → Dµϕ = ∂µϕ− ϕ
∂ϕ

∂ϕ̃
∂µ

∂ϕ̃

∂ϕ︸ ︷︷ ︸
Gauge connection coefficient

πµ → π̃µ =
∂ϕ

∂ϕ̃︸︷︷︸π
µ

Inverse gauge Jacobian



▶ Furthermore, if we have multiple similar scalar fields, they start
behaving like abstract indexed quantities i.e. abstract tensors.
Since by definition the theory of a real-valued classical field is
equivalent to the theory of a single-index classical field theory,
we can, for instance, make the correspondances,

ϕ2n ↔ (ϕaϕ
a)n

ϕ2n+1 ↔ (ϕaϕ
a)n ϕb

▶ In the theory of indexed classical fields, the potential must act
on a gauge scalar, and the simplest gauge scalar which only
depends on the indexed fields ϕa is ϕaϕ

a. Thus,

V = V (ϕaϕ
a)

In the real-valued classical field theory, this corresponds to
asserting,

V = V
(
ϕ2

)



▶ Therefore, in a series expansion of the potential, odd powers
vanish,

V
(
ϕ2

)
=

∞∑
n=1

1

n!
gn︸︷︷︸ϕ2n

Coupling constants

▶ Since we know that in Klein-Gordon theory,
V (ϕ) = 1

2m
2ϕ2 +O

(
ϕ3

)
, in the above, we set g1 =

1
2m

2ϕ2

and write the potential as,

V (ϕ) =
1

2
m2ϕ2 +

∞∑
n=2

gn
n!

ϕ2n



▶ Thus, the full Klein-Gordon Lagrangian resembles

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 +

∞∑
n=2

gn
n!

ϕ2n

▶ From the above, the full Klein-Gordon equation resembles,

∇µ∂
µϕ+m2ϕ− 2

∞∑
n=1

gn+1

n!
ϕ2n+1 = 0

This completes our Klein-Gordon analysis.



Newtonian Gravitation



As a Classical Field Theory

▶ Newtonian gravitation has two aspects:

1. How matter, encoded in the mass density field ρ, affects the
gravitational potential field ϕ.

2. How the gravitational potential field ϕ causes matter to move
and hence change the matter density field ρ.

Field theory concerns itself with the latter aspect.

▶ Unfortunately, Newtonian gravitation is not a classical field
theory, as it does not obey local Lorentz invariance and
locality. Fixing this requires Einstein’s general theory of
relativity, where the gravitational field is not a separate tensor
field living in spacetime but the metric tensor itself, capturing
the geometry of spacetime.



▶ Fortunately, Newtonian gravitation is almost a classical field
theory, as it still obeys the principle of stationary action,
global Galilean invariance and gauge invariance.

▶ The gauge structure of the gravitational potential field ϕ is
affine, i.e. ϕ → ϕ+ s where s is a constant, does not change
physics, encoded in the gravitational field g i = −∂iϕ.

▶ As we shall see, the gravitational potential field ϕ obeys the
principle of stationary action, as its equation of motion,
Poisson’s equation, can be written as an Euler-Lagrange
equation. In fact, it is an example of the Klein-Gordon
equation in D = 3 dimensions!



Non-relativistic Klein-Gordon Theory in D=3

▶ The Klein-Gordon theory not only applies in D = 4
dimensions with special/general relativity, but also D = 3
dimensions with Galilean relativity!
This is because the way classical fields are constructed in
D = 3 is analogous to that in D = 4, except we replace local
Lorentz invariance + locality with global Galilean invariance.
Furthermore, we replace the Minkowski metric for D = 1 + 3
spacetime with the Euclidean metric for D = 3 space.

▶ Except the above, much of the mathematical machinery for
fields remains the same in the non-relativistic D = 3 case, for
example – tensor fields, principle of stationary action,
Euler-Lagrange equation, Noether’s theorem,
energy-momentum tensor and its conservation, etc.



Constructing the Lagrangian

▶ Recall Poisson’s equation for the gravitational potential field
ϕ,

∇i∂
iϕ+ 4πGρ = 0

In comparison, here’s the Klein-Gordon equation in a
potential:

∇i∂
iϕ+

∂V

∂ϕ
= 0

▶ Clearly, Poisson’s equation can be written as a Klein-Gordon

equation by setting
∂V

∂ϕ
= 4πGρ. The simplest solution for

such a V (ϕ) is,

V (ϕ) = 4πGρϕ



Thus, the Lagrangian for Newtonian gravitation is,

L =
1

2
∂iϕ∂

iϕ− 4πGρϕ

▶ A gauge structure inherent to any classical field theory is
linearity. I.e., linear transformations of the Lagrangian
L → αL+ β (α, β are constants) do not change the
corresponding Euler-Lagrange equation.

▶ By dividing the obtained Lagrangian by 4πG , we get an
equally valid Lagrangian, which is more commonly used in the
physics and mathematics literature,

L =
1

8πG
∂iϕ∂

iϕ︸ ︷︷ ︸
∇⃗ϕ·∇⃗ϕ

− ρϕ



Mass Density Field as a Classical Field

▶ Notice that if we vary the Lagrangian we constructed with
respect to the mass density field, we get the [nonsensical]
equation:

ϕ = 0

▶ Classical field theory deals with this problem by adding a new
term LM to the Lagrangian, representing the unspecified
theory of matter.

L =
1

8πG
∂iϕ∂

iϕ− ρϕ+ LM

Additionally, we want
δLM
δϕ

= ρ. Such a matter field

Lagrangian would respect both Newtonian gravitation and the
matter field theory.
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Final Notes

▶ Big thank you to Pure Math Club for hosting this exciting
event and to everyone attending this talk!

▶ More on this presentation can be found on my blog in the
classical field theory section
(https://booodaness.github.io/tempus-
spatium/categories/classical-field-theory/).

▶ Source code, pdf for this presentation available at:
https://github.com/Booodaness/scientific-documents

▶ Feel free to contact me on Discord at booodaness if you have
any questions!

https://booodaness.github.io/tempus-spatium/categories/classical-field-theory/
https://booodaness.github.io/tempus-spatium/categories/classical-field-theory/
https://github.com/Booodaness/scientific-documents/tree/master/applying_klein_gordon_theory_gravitation
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