Siddhartha Bhattacharjee s3bhatta@uwaterloo.ca Discord: booodaness

Mathematical Physics (1C) University of Waterloo

Bundles in Classical Gauge Field Theory

Canadian Undergraduate Mathematics Conference, University of Toronto, 2023

Outline

1 Classical Gauge Fields

- Classical Fields
 - Definition
 - Stationary-action Principle
 - Local Lorentz Invariance
 - Gauge Invariance

2 Building Bundle-related Concepts

- Fibres
- Total Space
- Projections
- 'Baby' Bundles

3 Topological Notions

- Topological Bundles
- Total Space
- Product Bundle Structure
- Sections

Definition

• Let \mathcal{M} be a pseudo-Riemannian manifold with a metric g. A classical field ϕ of rank (p,q) is a differentiable tensor field living on \mathcal{M} i.e.,

As a differentiable tensor field

$$\phi : \mathcal{M} \to \left(\prod_{i=1}^{p} V^* \times \prod_{j=1}^{q} V \to \mathbb{R} \right)$$

 $\phi \in C\left(\mathcal{M}\right)$

where V is a vector space with \mathbb{R} as the base field.

This is the starting point for defining classical fields. Additionally, they obey some physical properties discussed below.

Physical properties

- 1. Stationary-action principle
- 2. Local Lorentz invariance
- 3. Gauge invariance

Stationary-action Principle

Let the function space of
$$\phi$$
, i.e.
$$\left[\mathcal{M} \to \left(\prod_{i=1}^{p} V^* \times \prod_{j=1}^{q} V \to \mathbb{R}\right)\right] \cap C(\mathcal{M}), \text{ be denoted as } \mathcal{F}.$$

Definition (Lagrangian)

The Lagrangian [density] \mathcal{L} of a classical field ϕ is a differentiable map $\mathcal{L}: \mathcal{F} \times T^* \mathcal{M} \times \mathcal{M} \to \mathbb{R}.$

Here, $T^*\mathcal{M}$ denotes the cotangent bundle of \mathcal{M} .

However, we have not yet motivated bundles. Therefore, for now, we will think of T* M as being set-theoretically isomorphic to the set of covariant derivatives of \u03c6 along every continuous curve \u03c7 in M,

$T^*\mathcal{M}\cong_{\mathsf{set}} \{\nabla_\gamma \phi \mid \gamma: [0,1] \to \mathcal{M} \text{ is continuous}\}$

By continuous curves, we refer to the topological notion of the continuity of maps from the topological space ([0,1], O_R|_[0,1]) to (M, O_M).
 Here, O_R|_[0,1] is the subspace topology induced on the unit interval by the Euclidean topology on R and O_M is the manifold topology on M.

Definition (Action)

The action for a tensor field ϕ in a compact neighbourhood $U \subset \mathcal{M}$ is the linear functional,

$$S\left[\phi\right] := \int_{x \in U} \varepsilon \mathcal{L}\left(\phi\left(x\right), T_x^* \mathcal{M}, x\right)$$

where ε is the Riemannian volume form which in local coordinates can be written as,

$$\varepsilon := \sqrt{\left|\det\left(g\right)\right|} \bigwedge_{\mu} \mathsf{d}x^{\mu}$$

In local coordinates, using index notation, the action can be covariantly written in terms of components as,

$$\begin{split} S\left[\phi\left(x^{\alpha}\right)\right] &= \int_{U} \varepsilon \mathcal{L}\left(\phi^{\rho_{1}\ldots\rho_{p}}{}_{\lambda_{1}\ldots\lambda_{q}}, \nabla_{\mu}\phi^{\rho_{1}\ldots\rho_{p}}{}_{\lambda_{1}\ldots\lambda_{q}}, x^{\alpha}\right)\\ \text{where } \phi^{\rho_{1}\ldots\rho_{p}}{}_{\lambda_{1}\ldots\lambda_{q}} &= \bigcap_{i=1}^{p} \mathrm{d}x^{\rho_{i}} \circ \bigcap_{j=1}^{q} \partial_{\lambda_{j}}\left(\phi\right). \end{split}$$

Postulate (Stationary-principle action)

For on-shell trajectories $\phi \in \mathcal{F}$, we have the following for all compact neighbourhoods $U \subset \mathcal{M}$,

$\delta S\left[\phi\right]=0$

i.e.,

$$\delta \int_{U} \varepsilon \mathcal{L} \left(\phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q}, \nabla_{\mu} \phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q}, x^{\alpha} \right) = 0$$

Theorem (Euler-Lagrange equations)

A classical field ϕ is on-shell i.e. obeys the principle of stationary action if and only if it satisfies the Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}}{\partial \phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q}} - \nabla_\mu \frac{\partial \mathcal{L}}{\partial \left(\nabla_\mu \phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q} \right)} = 0$$

with summation over dummy indices implied (Einstein summation convention).

Proof.

$$\delta S = 0$$

$$\delta \int_U \varepsilon \mathcal{L} = 0$$

$$\int_{U} \varepsilon \left[\delta \phi^{\rho_1 \dots \rho_p} {}_{\lambda_1 \dots \lambda_q} \frac{\partial \mathcal{L}}{\partial \phi^{\rho_1 \dots \rho_p}} + \delta \left(\nabla_{\mu} \phi^{\rho_1 \dots \rho_p} {}_{\lambda_1 \dots \lambda_q} \right) \frac{\partial \mathcal{L}}{\partial \left(\nabla_{\mu} \phi^{\rho_1 \dots \rho_p} {}_{\lambda_1 \dots \lambda_q} \right)} \right] = 0$$

$$\int_{U} \varepsilon \left[\delta \phi^{\rho_1 \dots \rho_p} {}_{\lambda_1 \dots \lambda_q} \frac{\partial \mathcal{L}}{\partial \phi^{\rho_1 \dots \rho_p} {}_{\lambda_1 \dots \lambda_q}} + \nabla_{\mu} \left(\delta \phi^{\rho_1 \dots \rho_p} {}_{\lambda_1 \dots \lambda_q} \right) \frac{\partial \mathcal{L}}{\partial \left(\nabla_{\mu} \phi^{\rho_1 \dots \rho_p} {}_{\lambda_1 \dots \lambda_q} \right)} \right] = 0$$

Proof (continued).

$$\begin{split} \int_{U} \varepsilon \delta \phi^{\rho_{1}...\rho_{p}} \frac{\partial \mathcal{L}}{\partial (\phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q}}} \\ &+ \frac{\partial \mathcal{L}}{\partial \left(\nabla_{\mu} \phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q} \right)} \int_{U} \varepsilon \nabla_{\mu} \left(\delta \phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q} \right)} \\ &- \int_{U} \varepsilon \left[\nabla_{\mu} \frac{\partial \mathcal{L}}{\partial \left(\nabla_{\mu} \phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q} \right)} \int \varepsilon \nabla_{\mu} \left(\delta \phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q} \right) \right] = 0 \\ &\int_{U} \varepsilon \delta \phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q} \frac{\partial \mathcal{L}}{\partial \phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q}} \\ &- \int_{U} \varepsilon \left[\delta \phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q} \nabla_{\mu} \frac{\partial \mathcal{L}}{\partial \left(\nabla_{\mu} \phi^{\rho_{1}...\rho_{p}} \lambda_{1}...\lambda_{q} \right)} \right] = 0 \end{split}$$

Proof (continued).

$$\int_{U} \varepsilon \delta \phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q} \left[\frac{\partial \mathcal{L}}{\partial \phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q}} - \nabla_{\mu} \frac{\partial \mathcal{L}}{\partial \left(\nabla_{\mu} \phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q} \right)} \right] = 0$$

Since the above is true for all compact neighbourhoods $U \subset M$, by the fundamental lemma of the calculus of variations,

$$\frac{\partial \mathcal{L}}{\partial \phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q}} - \nabla_\mu \frac{\partial \mathcal{L}}{\partial \left(\nabla_\mu \phi^{\rho_1 \dots \rho_p}{}_{\lambda_1 \dots \lambda_q} \right)} = 0 \quad \Box$$

The power of the above functional-analytic manipulations and notions is that the above statements are all logically equivalent, therefore proving 'S-A principle iff E-L equations'.

Local Lorentz Invariance

- ▶ Local Lorentz invariance is the idea that at each $p \in \mathcal{M}$, the action of the restricted Lorentz group SO⁺ (1,3) on tensorial objects living on $T_p\mathcal{M}$, leaves them invariant.
- This means that the components of a rank (p,q) tensor field T with components T^{ρ1...ρp}_{λ1...λq} must transform covariantly with respect to the restricted Lorentz group.
 In other words, we require that for any pair of primed and unprimed coordinate systems related by some transformation Λ ∈ SO⁺ (1,3), the following principle applies:

Postulate (Local Lorentz invariance)

$$T = T'$$

This simple principle has far-reaching consequences in theoretical physics, such as severe restriction induced on the form of physical laws and equations.

Theorem (Tensor component transformation law)

Invariance holds if and only if for a tensor field T, its components transform under any $\Lambda\in {\rm SO}^+\,(1,3)$ represented by (in terms of its action on the concerned tangent space) a Jacobian with components $\Lambda^{\mu'}_{\mu}=\frac{\partial x^{\mu'}}{\partial x^{\mu}}$ as,

$$T^{\rho_1'\dots\rho_{p'}}_{\lambda_1'\dots\lambda_{q'}} = \left(\prod_{i=1}^p \Lambda^{\rho'_i}_{\rho_i}\right) T^{\rho_1\dots\rho_p}_{\lambda_1\dots\lambda_q} \left(\prod_{j=1}^q \dots \Lambda^{\lambda_j}_{\lambda'_j}\right)$$

Proof.

By local Lorentz invariance,

$$T^{\rho_{1'}\dots\rho_{p'}}{}_{\lambda_{1'}\dots\lambda_{q'}} := T\left(\mathsf{d}x^{\rho_{1'}},\dots,\mathsf{d}x^{\rho_{p'}},\partial_{\lambda_{1'}},\dots,\partial_{\lambda_{q'}}\right)$$
$$= T\left(\frac{\partial x^{\rho_{1'}}}{\partial x^{\rho_{1}}}\mathsf{d}x^{\rho_{1}},\dots,\frac{\partial x^{\rho_{p'}}}{\partial x^{\rho_{p}}}\mathsf{d}x^{\rho_{p}},\frac{\partial x^{\lambda_{1}}}{\partial \lambda_{1'}}\partial_{\lambda_{1}},\dots,\frac{\partial x^{\lambda_{q}}}{\partial \lambda_{q'}}\partial_{\lambda_{q}}\right)$$

Proof (continued).

Since a tensor is a multilinear map,

$$T^{\rho_{1'}\dots\rho_{p'}}{}_{\lambda_{1'}\dots\lambda_{q'}} = \left(\prod_{i=1}^{p} \frac{\partial x^{\rho_{i'}}}{\partial x^{\rho_{i}}}\right) T\left(\mathsf{d}x^{\rho_{1}},\dots,\mathsf{d}x^{\rho_{p}},\partial_{\lambda_{1}},\dots,\partial_{\lambda_{q}}\right) \left(\prod_{j=1}^{q} \frac{\partial x^{\lambda_{j}}}{\partial \lambda_{j'}}\right)$$
$$= \left(\prod_{i=1}^{p} \frac{\partial x^{\rho_{i'}}}{\partial x^{\rho_{i}}}\right) T^{\rho_{1}\dots\rho_{p}}{}_{\lambda_{1}\dots\lambda_{q}} \left(\prod_{j=1}^{q} \frac{\partial x^{\lambda_{j}}}{\partial \lambda_{j'}}\right)$$
$$= \left(\prod_{i=1}^{p} \Lambda^{\rho_{i}'}{}_{\rho_{i}}\right) T^{\rho_{1}\dots\rho_{p}}{}_{\lambda_{1}\dots\lambda_{q}} \left(\prod_{j=1}^{q}\dots\Lambda^{\lambda_{j}}{}_{\lambda_{j}'}\right) \square$$

Gauge Invariance

Observational equivalence

In classical field theory, observational equivalence is the idea that two classical fields ψ and ϕ yielding identical physical quantities give rise to identical physical predictions.

- ▶ Typically, these physical quantities are geometric objects such as the curvature form $\Omega = d\phi + \phi \wedge \phi$ associated with ϕ .
- This gives rise to gauge freedom, wherein a classical field can contain physically redundant information in its representation as a differentiable tensor field.
- Therefore, given actual physical quantities in some context, such as the curvature form, there arise multiple ways to write the underlying classical field, each representation said to be a 'gauge' of the field.

Definition (Gauge of a classical field)

Formally, a gauge of a classical field ϕ can be thought of as some representative of the equivalence class $[\phi]$ defined by some equivalence relation (gauge invariance) of the form,

$$\forall \psi, \phi \in \mathcal{F} : \psi \sim \phi : \Longleftrightarrow \exists f \in G : f \cdot \psi = \phi$$

where (G, \cdot) is some group (called the gauge group of the concerned field) which preserves relevant physical quantities such as curvature.

 e.g. Consider the Newtonian gravitational field φ, which is a real-valued scalar field on a 3-dimensional *pseudo*-Riemannian manifold *M*. Its curvature form is,

$$\Omega = \mathsf{d}\phi + \phi \wedge \phi$$
$$= \mathsf{d}\phi$$

In local coordinates, the components of $\Omega = d\phi$ are $\Omega_i = \partial_i \phi$. This is identical (up to scaling) to the dual of the gravitational force field F^* . I.e.,

$$F^* = -m\mathsf{d}\phi$$

$$F_i = -m\partial_i \phi$$

Since the force field is a physical entity, any gauge transformation of φ leaving its curvature form invariant, must be observationally equivalent to φ. An example of such a transformation is a translation disctated by the additive group of closed 1-forms ω,

$$\begin{split} \phi &\mapsto \widetilde{\phi} = \phi + \omega \\ \Omega &\mapsto \widetilde{\Omega} = \mathsf{d}\widetilde{\phi} \\ &= \mathsf{d} \left(\phi + \omega \right) \\ &= \mathsf{d}\phi + \mathsf{s}\mathsf{d}\widetilde{\omega} \\ &= \Omega \end{split}$$

Similarly, in electromagnetism, a gauge transformation of the potential 1-form A resembles translation under the additive group of 1-forms. This leaves the curvature form F = dA invariant,

$$A \mapsto \widetilde{A} = A + d\alpha$$
$$F \mapsto \widetilde{F} = d\widetilde{A}$$
$$= d(A + d\alpha)$$
$$= dA + d^{2}\alpha$$

Sid (s3bhatta@uwaterloo.ca)

Bundles in Classical Gauge Field Theory

University of Waterloo, Mathematical Physics

Fibres

Definition (Fibre)

The fibre $F\left(p\right)$ associated with a classical field $\phi,$ at a point $p\in\mathcal{M}$ is defined as,

$$F(p) := \bigcup_{\psi \in [\phi]} \{(p, \psi(p))\}$$

Intuitively, the fibre at a point is simply the set of values of the classical field in all its gauges, at that point.

Total Space

Definition (Total space)

The total space E associated with a classical field ϕ living on a spacetime ${\cal M}$ is defined as,

$$E := \bigcup_{p \in \mathcal{M}} F(p)$$

Remark

$$E = \bigcup_{p \in \mathcal{M}} F(p)$$

=
$$\bigcup_{p \in \mathcal{M}} \bigcup_{\psi \in [\phi]} \{(p, \psi(p))\}$$

=
$$\bigcup_{\psi \in [\phi]} \bigcup_{p \in \mathcal{M}} \{(p, \psi(p))\}$$

$$\subseteq \mathcal{M} \times \mathbb{R}$$

Projections

Consider the following projection:

Projections $E \to \mathcal{M}$

$$\pi: \begin{cases} E & \to \mathcal{M} \\ (p, \psi(p)) & \mapsto p \\ \in [\phi] \end{cases}$$

So far, we have been trying to build bundle-related notions algebraically rather than topologically. In this light, a projection π : E → M can be viewed as an idempotent map from E to its subset M,

$$\pi \circ \pi = \pi$$

'Baby' Bundles

- A bundle formalizes the notion of a space living on another space (or a space parameterized by another space).
- Informally, we may imagine a bundle captures the idea of the graphs $\bigcup_{p \in \mathcal{M}} \{(p, \psi(p))\} \text{ of multiple fields } \psi \text{ in the same gauge } [\phi], \text{ living on a spacetime } \mathcal{M}.$
- Such a structure (which we will call a 'baby' bundle as it does not yet incorporate topology :) is the tuple (E, π, M), often simply denoted as E ^π→ M.

Visualizing Bundles

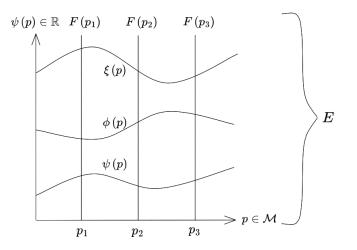


Figure: A bundle $E \xrightarrow{\pi} \mathcal{M}$. Note that $\psi \sim \phi \sim \xi$.

Topological Bundles

- In topology, a bundle is constructed by considering a total [topological] space (E, O_E), a base space (B, O_B) and a continuous surjection π : E → B.
 (E, π, B) or E → B is then said to be a [topological] bundle.
- The fibre at a point $p \in B$ is defined as,

$$F(p) := \operatorname{preim}_{\pi} (\{p\}) \\ := \{x \in B : \pi(x) = \{p\}\}\$$

A fibre bundle (E, B, π, F) or F → E → B is a structure where E → B is a bundle and every fibre is homeomorphic to a manifold F, called the typical fibre of the fibre bundle,

$$\forall x \in E : \operatorname{preim}_{\pi}(\{x\}) \cong_{\operatorname{top}} F$$

Total Space

- In the field-theoretic situation we considered earlier, the total space associated with a rank (p, q) field on a spacetime M is typically homeomorphic to a manifold of dimension dim (M) + p + q.
- We will consider Newtonian gravitation and classical electrodynamics on 3-dimensional Euclidean, and 4-dimensional Minkowski space, respectively.
- In the case of the Newtonian gravitational field ϕ , the total space is $\mathbb{R}^3 \times \mathbb{R}$ and this can be equipped with the Euclidean topology $\mathcal{O}_{\mathbb{R}^4}$.
- For the electromagnetic 4-potential A, the total space is ℝ⁴ × ℝ⁴. This is Lorentzian, but we can make it Euclidean after a Wick rotation. In other words, the total space is isomorphic to ℝ⁸, which can then be equipped with the Euclidean topology O_{ℝ⁸}.

Product Bundle Structure

- With the above constructions, we find that the canonical projection $E \rightarrow \mathcal{M}$ we defined earlier is indeed continuous and surjective, for both the gravitational potential and electromagnetic 4-potential fields.
- Therefore, (ℝ³ × ℝ, π_{ℝ³}, ℝ) is a bundle, known as a product bundle. The same goes for (ℝ⁴ × ℝ⁴, π_{ℝ⁴}, ℝ⁴) in the case of the electromagnetic field in flat spacetime.
- Furthermore, in each case, the fibres are isomorphic to R and R⁴, respectively. This means that the product bundles above are also fibre bundles.

Sections

Definition (Section)

A [cross-]section s of a bundle $E \xrightarrow{\pi} B$ is as a continuous inverse of π ,

 $\pi \circ s = \mathsf{id}_B$

Sections can be visualized in the following manner:

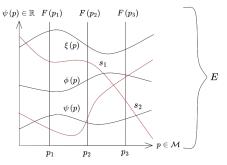


Figure: s_1 and s_2 are sections of the bundle $E \xrightarrow{\pi} B$.

- In the modern, geometric construction of classical field theory, classical fields are defined as sections of fibre bundles.
- The typical fibres of these fibre bundles are usually Lie groups (which are manifolds, as required).

References

- 1. The Geometrical Anatomy of Theoretical Physics, Frederic P. Schuller
- 2. From Special Relativity to Feynman Diagrams, Riccardo D'Auria, Mario Trigiante
- 3. Wikipedia