
Analysis of the Three-body Problem
Geometry, Chaos and Simulation

Avery Cormier, Siddhartha Bhattacharjee, ZiLing Chen

University of Waterloo

AMATH 271 Final Project

Fall 2023

Abstract

In this project, we examine the physical evolution and stability of three-body systems.

We introduce the N -body problem and capture a bird’s eye view of the geometry un-

derlying systems in the form of physical space, configuration space, state space and the re-

lationships between them elucidated using algebraic topological notions such as loop spaces

and homotopy theory.

After laying out the theoretical backdrop, we steer our exposition to investigate various

aspects of the three-body problem, starting with the local evolution of error at given states.

We also simulate, in python, the evolution of the entire system. Finally, we analyze a periodic

solutions. Overall, we accomplish this by studying the three-body problem mathematically.

The system will be evolving over time with given variables of mass, position, and velocity,

for each body in three dimensions.

First, we find the 9 differential equations using Newtonian mechanics. We then con-

vert this to a 1st order DE. This will allow us to use computational methods to simulate

the three-body system given initial values. By finding a next approximate state we can

correct the accuracy by accounting for conserved quantities. We do this by adjusting our

generalized coordinates in the direction to most quickly change conserved quantities. This

direction is found by the gradient of our conserved quantities. This addition to the compu-

tational method ensures that energy, momentum, angular momentum are conserved when

constraining to the center of mass to be the origin.

Once we have the DE we can linearize it and write a program to find the eigenvectors and

eigenvalues. This will allow use to solve for error locally. If the eigenvalues are negative, then

that component of the error goes to 0. If the eigenvalue is positive, then that component of

the error grows exponentially. This will tell where there are regions of chaos and stability.

By accumulating this value of stability across the path we can get a cumulative estimate of

the stability of the system over those states.

1

Contents

1 Introduction 3

1.1 Setting . 3

1.2 Collisions and Non-holonomy . 4

1.3 Particles and Holonomization . 6

1.4 Orbits . 7

2 Equations 8

2.1 Equations of motion . 8

2.2 Conserved quantities . 9

2.3 Lyapunov Stability . 9

2.3.1 A Matrix . 10

3 Analysis 11

4 Computations 12

4.1 Computational methods . 12

4.2 Results / Comparisons . 13

5 Conclusions 17

6 Appendix A: General N-body Problem 18

6.1 Relational Setting . 18

6.1.1 States, Configurations and Positions 18

6.1.2 Philosophy . 20

6.1.3 Configuration Space . 20

6.2 Some Classifications of Systems . 22

6.3 Loop Spaces . 27

6.3.1 Based, Unbased and Free Loop Spaces 27

6.3.2 Concatenation . 29

6.3.3 Relationship With State Spaces . 30

6.3.4 Philosophy . 32

6.4 Constraints . 33

6.4.1 Classification . 33

6.4.2 Homotopic Notions . 36

7 Appendix B: Python Code 44

2

Chapter 1

Introduction

The present is big with the

future, the future might be read

in the past, the distant is

expressed in the near.

Gottfried Leibniz

1.1 Setting

A large class of problems that physics solves is the N -body problem: that of predicting the

configurations of N bodies at some point of time, given the configurations at some other time

as well as the interactions and dynamics of the bodies (encoded in the action, Lagrangian,

Hamiltonian, Hamilton’s principle function or one of such equivalent quantities).

Classical mechanics is a chassis for dealing with and solving such kinds of problems,

without incorporating the vagaries of quantum mechanics. One of the frameworks that

can be built around this skeleton of classical mechanics is non-holonomic mechanics, which

is described in Appendix A. This framework is further fleshed out with the calculus of

variations to talk about how configurations actually evolve with time, giving rise to the

Lagrangian, Hamiltonian, Poisson bracket, Hamilton-Jacobi, Maupertius-Jacobi and other

equivalent formulations of non-holonomic classical mechanics.

Most of this introduction builds arounds the concepts constructed in the appendix men-

tioned, in order to move on to analysis and computations for the 3-body problem.

3

CHAPTER 1. INTRODUCTION 4

1.2 Collisions and Non-holonomy

Consider a system of N bodies occupying, at each instant of time t ∈ R, a rigid region of

space1 Vα : R → P(RD) with α = 1, 2, . . . , N . Assuming that none of these bodies are

made of simpler bodies for the purposes of tracking their motion, these regions are path

connected which intuitively means that it does not contain disjoint regions and that any

two points in it are accessible to each other via some path that need not leave the body.

Rigidity would entail the time-invariance of the distances between every pair of points in

the body. Formally, this can be modelled as a holonomic constraint as follows.

We imagine each region of space Vα(t) occupied by a body as a collection of mutually

disjoint regions Ui(t) labelled by lower case Latin indices as i = 1, 2, . . . , ν(α),

i ̸= j =⇒ Ui(t) ∩ Uj(t) = 0

Vα(t) =

ν(α)⋃
i=1

Ui(t)

In other words, {Ui(t)} is a partition for Vα(t). Each part Ui(t) can also be viewed as

an equivalence class,

∀ x, y ∈ RD : x ∼ y ⇐⇒ x, y ∈ Ui(t)

Ui(t) = [ρρρi(t)] such that ∀ t ∈ R : ρρρi(t) ∈ Ui(t)

Thus, we can represent each part of the region a body occupies by a position ρi : R → RD.

The region Vα(t) is rigid when the distances between the points representing its parts

do not change,

f(ρ1(t), ρ2(t), . . . , ρν(α)(t)) = 0

where,

f(ρ1(t), ρ2(t), . . . , ρν(α)(t)) =

ν(α)∑
i=1

ν(α)∑
j=1

∥ρρρi(t)− ρρρj(t)∥2

When the above function is zero, so is the sum of the squares of distances between all pairs

of regions, therefore, each distance must be zero. Even though the above constraint looks

semi-holonomic, since it dictates rigidity, one can always pick a reference frame where the

region occupied by the αth body is stationary, making the contraint holonomic. However,

a problem is that there is generally no frame where this static nature of a body is true

for all the bodies occupying {Vα(t)}. Therefore, the constraint where all of these regions

are simultaneously rigid is semi-holonomic; and semi-holonomic constraints generally make

systems non-holonomic.

1Given a set A, P(A) denotes its power set i.e. the set of all subsets of A,

U ∈ P(A) ⇐⇒ U ⊆ A

CHAPTER 1. INTRODUCTION 5

There is an additional layer of complexity that comes with rigidity, as follows. When we

track each body (which is, really, a time-dependent path connected region as discussed) using

only the position of a representative location always within the body, no two separate bodies

may approach each other so close that they share some common region. This undesirable

situation, which would contradict rigidity, is a collision at some time t,

∃ t ∈ R, α, β : Vα(t) ∩ Vβ(t) ̸= ∅

Therefore, complete rigidity is not only expressed by a collection of semi-holonomic

constraints for each body, but an additional statement about the entire system of bodies

wherein no two bodies can collide. This is a complicated setup, and one that makes non-

holonomy inevitable as an artefact of tracking entire bodies with positions of single points

in them.

We will not prove the above relationship between non-holonomy and collisions as the

purpose of this section is to justify choosing a holonomic setup and how the point particle

N -body subclass of N -body problems achieves it meaningfully. However, the intuition for

non-holonomy emerging from collisions is simply that a non-point body contains more states

than configurations. Here, the states are the positions of all subregions Ui(t) in the body,

which cannot be sufficiently captured in a single representative position as interactions

with other bodies could entail collisions, which happen at the surface level of rigid bodies,

with the surfaces involving complicated attributes such as size, shape and orientation. The

configuration, on the other hand, is the much simpler position of a representative point

always contained in the body. By definition, more states than configurations leads to non-

holonomy.

A good reason for entirely curtailing non-holonomy from analyzing a specific N -body

problem, at least initially, is to not have to deal with the complexities introduced by rigidity

as discussed above. Such details would make it initially difficult to glean the essential

features of N -body problems shared by holonomic and non-holonomic systems alike. For

example, collisions between finitely-sized bodies tracked using just points in them would

appear unsmooth as the bodies can continuously approach each other but would abruptly

not be able to (and reflect off, to preserve total linear momentum). Therefore, the calculus

of trajectories of such nature would entail rigorous care which makes analyzing solutions an

extensive enterprise.

The question then remains of how to ’holonomize’ the N -body problem in a way that

keeps as many of its features, as possible, intact.

CHAPTER 1. INTRODUCTION 6

1.3 Particles and Holonomization

A simple enough answer to the above question is to consider situations when bodies rep-

resented by single points is a good approximation. This can happen in general when the

bodies travel distances much larger than their size. In such a scenario, microscopic details

about each body’s surface would not be important for collision considerations.

The idea being described here is simply that of a formal particle or simply a particle:

a body whose trajectories are much bigger than its own size.

Remark.

Note that point particles are a subclass of the formal particles described above. In a sense

described below, particles are approximately point particles as far as N body dynamics

are concerned.

Without getting into the gory mathematics establishing the connection between this

notion of size comparison of trajectories and bodies, and holonomy, a relatively simple

partial argument is as follows. By their very nature, formal particles would not undergo

’very’ unsmooth collisions; two particles can get close to each other and abruptly bounce

off but since their sizes are much smaller than trajectories, this collision is approximately

equivalent to a setup where they were just the points representing them, wherein the collision

would simply place the points next to each other and not ’inside’ each other as this very

notion of ’inside’ has been removed. In other words, particles make notions of surface

structure irrelavant for the dynamics of N bodies, thereby reducing the state space to

the same ’size’ as the configuration space of points representing the bodies. And so, this

procedure of ’holonomization’ says, ”let there be holonomy!”.

CHAPTER 1. INTRODUCTION 7

1.4 Orbits

The previous part of the introduction, in conjunction with appendix A, is a theoretical

background for the analysis and computation to come for specifically looking at the 3-body

problem from a pragmatic point of view. In order to complete this section and move on

to to the pragmatic section, we lay out the idea of how orbits exist as solutions of N -body

problems. The backdrop for this is that of loop spaces described in the mentioned appendix.

Lagrangian and other formulations of analytical mechanics begin with the principle of

stationary action which says that on-shell or ’natural’ trajectories q ∈ QR (where Q is the

configuration space) are those about which first-order perturbations keep the action (which

is a linear functional QR → R) stationary up to first-order i.e. δS[q] = 0.

Now, as S is a linear functional, concatenations of trajectories γ1, γ2 which are path

component equivalent satisfy,

S[γ̃2 ∗ γ1] = S[γ1]− S[γ2]

But if γ1, γ̃2 both keep the action stationary, so must their difference and hence their

concatenation,

δS[γ1] = δS[γ2] = 0

δS[γ1]− δS[γ2] = δS[γ̃2 ∗ γ1] = 0

Therefore, the existence of homotopic solutions guaruntees that of orbits, since γ̃2 ∗ γ1
is a loop. Now, if we assume Q has no holes, it is contractible and hence, simply connected

which allows homotopic curves to always exist between points, leading to loops.

Now that we have informally2 seen how orbits can come up in N -body problems, we can

justify analyzing them and their stability, which qualifies whether perturbations of orbits

deviate from orbits (instability) or stay ’close’ to the orbits (Lyapunov stability)3.

2formalizing this would involve proving that on-shell homotopic curves exist.
3A weaker notion of stability is asymptotic stability where perturbations of orbits eventually converge to

the orbits.

Chapter 2

Equations

2.1 Equations of motion

To begin with a solution to the problem we need to get the equations of motion

Figure 2.1: The three bodies (ZiLing, Sid, & Avery)

Consider the three bodies set up as shown in figure 1 2.1, and recall Newton’s force

equation

F⃗ =
GMm

r2
r̂

Applying this to object one tells us that

F⃗net
1 = F⃗12 + F⃗13 = gm1

(
m2

∥r⃗2 − r⃗1∥3
(r⃗2 − r⃗1) +

m3

∥r⃗3 − r⃗1∥3
(r⃗3 − r⃗1)

)
(2.1)

Using Newton’s F⃗ = ma⃗ = m ∂2

∂t2 r⃗ we get

∂2

∂t2
r⃗i = g

∑
j ̸=i

(
mj

∥r⃗j − r⃗i∥3
(r⃗j − r⃗i)

)

8

CHAPTER 2. EQUATIONS 9

Notice that by introducing v⃗ = ∂
∂t r⃗ we get a system of first order equations:

v⃗i =
∂

∂t
r⃗i,

∂

∂t
v⃗i = g

∑
j ̸=i

(
mj

∥r⃗j − r⃗i∥3
(r⃗j − r⃗i)

)
(2.2)

2.2 Conserved quantities

To perform computation and analysis it is useful to have reference to conserved quantities.

In the following we find conserved Energy, linear momentum, angular momentum. (And

also Center of mass since we can assume that momentum is 0)

Notice that we can get Potential Energy by integrating both sides of our force equa-

tion2.1. This gives us

U =
∑
i

∫
F⃗i · d⃗x =

1

2

∑
i,j: j ̸=i

− gmimj

∥r⃗j − r⃗i∥

We can combine this with the classic T = 1
2mv⃗

2 to get

E =
1

2

∑
i,j: j ̸=i

− gmimj

∥r⃗j − r⃗i∥
+
∑
i

1

2
miv⃗

2
i (2.3)

We find that the other conserved quantities are the same as usual namely

Linear Momentum:

p⃗ =
∑
i

miv⃗i

Angular Momentum:

ω⃗ =
∑
i

mir⃗i × v⃗i

Center of Mass:

R⃗ =
∑
i

mir⃗i

2.3 Lyapunov Stability

First some background. Lyapunov stability was developed during the Cold War to analyze

the stability of differential equations. We will use a semi - continuous version of this tech-

nique here.

We consider the equations of motion 2.2

Consider a small deviation, ϵ⃗, in the generalized position q⃗. And we say q⃗ ′ = q⃗+ ϵ⃗. We can

write the Equation of motion as ∂2

∂t2 q⃗
′ = H⃗(q⃗ ′)

By taking a linear approximation of H⃗ we get

∂2

∂t2
q⃗ +

∂2

∂t2
ϵ⃗ = H⃗(q⃗) +Aϵ⃗

Where Aij =
∂

∂qj
Hi

CHAPTER 2. EQUATIONS 10

Notice that the ∂2

∂t2 q⃗ and H⃗(q⃗) terms cancel leaving us with

∂2

∂t2
ϵ⃗ = Aϵ⃗

Consider the case where ϵ⃗ is an eigenvalue of A then Aϵ⃗ = λ then ϵ looks like ϵ⃗0e
√
λt

We find that the eigenvalues of A tells us about how small deviations effect the outcome

Notice that if the real component of
√
λ is greater than 0 then ϵ explodes in that direction,

(explodes as in gets exponentially large). If
√
λ is negative then the error converges, (that

is to say the error converges exponentially). If
√
λ or λ is 0 then ϵ⃗ is stable in that direction

Side note: We can construct a diagonal matrix that maps ϵ0 to ϵ in the eigenbasis. We

find that the determinant is e
∑√

λ∗t Notice that the positive and negative
√
λ always cancel

meaning our state space’s size / density is preserved. (This is more commonly know as

Liouville theorem)

2.3.1 A Matrix

I will not show the derivation of A because it is disgusting but we get

A =

 −Q12 −Q13 Q12 Q13

Q21 −Q21 −Q23 Q23

Q31 Q32 −Q31 −Q32

 (2.4)

where

Qij =
1

mir2ij

 3Fijx + Uij 3Fijy 3Fijz

3Fijx 3Fijy + Uij 3Fijz

3Fijx 3Fijy 3Fijz + Uij



Chapter 3

Analysis

We will demonstrate through computation that certain periodic systems are more stable

than others. To do this we will simulate the evolution of the system, as best we can, and

find the l =
√
λ of our A Matrix 2.4. We will then examine the distribution of our eigen-

values over time and show that chaotic systems have larger ls. Quickly I will note that any

error in time should always stay an error in time meaning that one of these eigenvalues will

always balance itself out. There are 9 ls so we will assume that one of them that is small

will not effect our analysis too much.

We can plot different statistics on the distribution eigenvalues for each time. These

statistics include average, max, standard deviation.

11

Chapter 4

Computations

4.1 Computational methods

For the computation we wrote a simulation in Python. This simulation uses Euler’s method

on the first order DE 2.2. This gives us the update rules

x2 = v1 ∗ dt+ x1, v2 = a1 ∗ dt+ v1

We iterate this process to get values for position at all times

The main problem with Euler’s method is that it creates large errors very quickly. To

accommodate this we use a method to ensure that conserved quantities are conserved.

We define K to be the conserved vector of quantities namely

K⃗ = [E, px, py, pz, Rx, Ry, Rz, ωx, ωy, ωz]

In the program we store what K⃗ is supposed to be at the start call this K⃗0. We then define

the error in conserved quantities to be ∆K⃗ = K⃗−K⃗0. This turns the problem of conserving

K⃗ into a problem of minimizing error, or finding the zeroes of ∆K⃗.

To do this we use Newton’s method, described as follows:

First notice that K⃗ and ∆K⃗ are functions of position q⃗ and velocity v⃗ = ∂
∂t q⃗. Let α⃗ = [q⃗, v⃗]

be the generalized state vector. Now we can write K⃗ as K⃗(α⃗). For convenience we also

define ∇⃗ = e⃗i
∂

∂αi
where e⃗i is the ith basis for α⃗.

We want a small change in α⃗ to give us the new error K⃗ ′ = K⃗0. This can be stated as

K⃗0 = K⃗ ′ = K⃗(α⃗+∆α⃗)

By performing a linear approximation of K⃗ we get K⃗(α⃗+∆α⃗)− K⃗(α⃗) ≈ L∆α⃗, giving us

∆K⃗ ≈ Lα⃗, or in each component ∆Ki ≈ (∇⃗Ki) ·∆α⃗

We find that the linear approximation gives Lij = (∇⃗Kj)i. You can think of each row as

the gradient of one of our conserved quantities which when multiplied by ∆α⃗ gives us the

change in that conserved quantity.

12

CHAPTER 4. COMPUTATIONS 13

If we want the direction in which to change α⃗ by to 0 our error then we use the gradient.

Suppose ∆α⃗ = ∆Ki
∇⃗Ki

∥∇⃗Ki∥2
. Then we find (∇⃗Ki) ·∆α⃗ = ∆Ki(∇⃗Ki) · ∇⃗Ki

∥∇⃗Ki∥2
= ∆Ki. This

is exactly what we want to adjust α⃗ by

Since we want this process to be fast we set

Hij =
(∇⃗Kj)i

∥∇⃗Kj∥2

Then we can find ∆α⃗ as

∆α⃗ = H∆K⃗, or ∆αi = Hij∆Kj

Since this is only a linear approximation it won’t fix the conserved quantities exactly, but

this method can be improved by using the updated values to repeat the process.

Since we don’t want to continually overshoot 0 error we can weight ∆αi by some coefficient.

We call this coefficient ρ where 0 < ρ < 1 and it is chosen by whichever best conserves our

quantities. We call the repetition number M which describes the number of times this is

recurred.

Through tedious calculation the matrix ∇⃗K⃗ looks like

−F1x 0 0 0 m1 0 0 0 −m1v1z m1v1y

−F1y 0 0 0 0 m1 0 m1v1z 0 −m1v1x

−F1z 0 0 0 0 0 m1 −m1v1y m1v1x 0

−F2x 0 0 0 m2 0 0 0 −m2v2z m2v2y

−F2y 0 0 0 0 m2 0 m2v2z 0 −m2v2x

−F2z 0 0 0 0 0 m2 −m2v2y m2v2x 0

−F3x 0 0 0 m3 0 0 0 m3v3z m3v3y

−F3y 0 0 0 0 m3 0 m3v3z 0 −m3v3x

−F3z 0 0 0 0 0 m3 −m3v3y m3v3x 0

m1v1x m1 0 0 0 0 0 0 m1z1 −m1y1

m1v1y 0 m1 0 0 0 0 −m1z1 0 m1x1

m1v1z 0 0 m1 0 0 0 m1y1 −m1x1 0

m2v2x m2 0 0 0 0 0 0 m2z2 −m2y2

m2v2y 0 m2 0 0 0 0 −m2z2 0 m2x2

m2v2z 0 0 m2 0 0 0 m2y2 −m2x2 0

m3v3x m3 0 0 0 0 0 0 m3z3 −m3y3

m3v3y 0 m3 0 0 0 0 −m3z3 0 m3x3

m3v3z 0 0 m3 0 0 0 m3y3 −m3x3 0


And H is as above except with column divided by their magnitude squared

4.2 Results / Comparisons

To show that the methods above help conserve energy and other quantities we will run some

initial states with and without the correction term

We examine the stable state (insert state here)

CHAPTER 4. COMPUTATIONS 14

Figure 4.1: The Conserved evolution and Quantities [dt = 0.002, ρ = 0.5,M = 100]

Figure 4.2: The Unconserved evolution and Quantities [dt = 0.002, ρ = 0.5,M = 0]

We now look at a more chaotic state to see how the algorithm fares. This state is given

by (insert state here)

CHAPTER 4. COMPUTATIONS 15

Figure 4.3: The Conserved evolution and Quantities [dt = 0.0001, ρ = 0.01,M = 10]

Figure 4.4: The Unconserved evolution and Quantities [dt = 0.0001, ρ = 0.01,M = 0]

We can compute the eigenvalues over time, for the conserved chaotic state 4.2, and we

receive the following graphs.

We can compute the eigenvalues over time, for the conserved chaotic state 4.2, and we

receive the following graphs.

CHAPTER 4. COMPUTATIONS 16

Figure 4.5: The full eigenvalue spectrum and it’s average

Figure 4.6: The full eigenvalue spectrum and it’s average

Chapter 5

Conclusions

Notice how in figure 6 4.2 we see repeated spikes in eigenvalue. This corresponds to an

increase in chaos at times t ≈ 2, 6, 10, 14, 18. Notice that the error 4.2 in all the conserved

quantities corresponds with these spikes

Also we see that in figure 7 4.2 we see three spikes in eigenvalue again. These correspond

to an increase in chaos at time t ≈ 2, 3, 5, 8. Notice that the error 4.2 in all the conserved

quantities corresponds with these spikes

Notice that the eigenvalues in the named ’chaotic state’ has peaks reaching up to on

average ≈ 2.6 where as the ’stable state’ has peaks only up to ≈ 1.3

This suggests that in between moments of chaos the state is stable, Generally we see

objects move away and are stable and slow but as they speed up they get close together and

become less stable

One problem with the analysis is that we only calculated the eigenvalues not the eigen-

vectors. We know that there are always + & - eigenvalues which in a stable state should

cancel. This means that the eigenvectors have to rotate in such a way to oscillate the

exponential growth and decay giving stable motion.

17

Chapter 6

Appendix A: General N-body

Problem

Mathematics is the art of giving

the same name to different things.

Henri Poincaré

6.1 Relational Setting

6.1.1 States, Configurations and Positions

Consider a system of N particles with generalized coordinates qqq1, qqq2, . . . , qqqn ∈ RD (usually

with D = 3), each a function1 of time-dependent parameters ϕ1, . . . , ϕm ∈ R. It will shortly
be explained that by construction, n ≤ N and Dn ≤ m.

The parameters ϕ1, . . . , ϕm completely describe the state of the system at any given time

t ∈ R. Hence, the set they collectively belong to, say S, will be called the state space of

the system. The parameters can be collected together as tuples of the form,

Definition 6.1.1: States

↪→
ϕ (t) = (ϕ1(t), . . . , ϕm(t))S ∈ S

which belong to some region of Rm. Therefore, S ⊆ Rm . The subscript S denotes that

the concerned tuples belong specifically to S and should not be compared with those in

other spaces to be discussed soon.

Similarly, all the generalized coordinates can be collected into tuples in the configura-

tion space Q, so that each collection of generalized coordinates (or ’configuration’ of the

whole system) resembles,

1Given a domain set X and codomain Y , a function will refer to a map f : X → Y s.t. for all x ∈ X,
imf (x) = {y ∈ Y : y = f(x)} is a singleton i.e. every x ∈ X is assigned exactly one y ∈ Y under f .

18

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 19

Definition 6.1.2: Configurations

⇀
qqq (

↪→
ϕ (t)) = (qqq1(

↪→
ϕ (t)), . . . , qqqn(

↪→
ϕ (t)))Q ∈ Q

and Q ⊆ Rn .

Last but not the least, the position of each particle is a vector in RD and the positions

of all N particles are contained in the tuple:

Definition 6.1.3: Positions

ρ⃗ = (rrr1(
⇀
qqq (

↪→
ϕ (t))), . . . , rrrN (

⇀
qqq (

↪→
ϕ (t)))) ∈ RN × D times. . . × RN

= RDN

The above relationships between the concerned quantities and more importantly, the

spaces they belong to, can be summarized in the form of a commutative diagram,

R (Time) S (State space)

RDN (Physical space) Q (Configuration space)

ρ⃗◦⇀
qqq ◦

↪→
ϕ

⇀
qqq ◦

↪→
ϕ

↪→
ϕ

⇀
qqq

ρ⃗

Figure 6.1: Relationships between spaces in which system lives.

By the above diagram commuting, we mean that the maps represented by arrows com-

pose as expected i.e. a function from B → C composed after one from A→ B defines a new

function A → C. In other words, the functions in a commutative diagram are transitive

under composition and so, going from one set to another (represented by nodes) defines

the same function regardless of the path taken. This turns out to follow from the standard

definition of functions that we use.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 20

6.1.2 Philosophy

The elements of each of the spaces discussed above tell something about the system. In

fact, we imagine that a system lives in those spaces, depending on how much information

we deem to be ’sufficient’ to represent the particles in the system. This depends on the task

at hand, which is often one among a set of interlinked problems regarding the nature of the

system.

Remark.

In particular, we claim that particles, as far as such problems are concerned, are localized

objects and can therefore be represented by time-dependent position vectors (which

can be collected into objects like ρ⃗). How these positions change is the subject of

kinematics. However, where kinematics, end, dynamics begins, which attempts to

explain why positions change as they do.

A particular schema for models achieving the task of explaining dynamics is one where

a particle has some intrinsic characteristics measured by parameters of the form
↪→
ϕ , and

the way these change with time and interact (perhaps even with the characteristics of other

particles) causally explain how the positions of the particles change. Therefore, the question

of why the particles move as they do can be reframed as how the parameters evolve, which

by some mechanism set the particles to their expected motion.

One can also take the reverse approach for the above philosophy. We can hold the

positions of particles to be the ’fundamental’ information representing them, and they have

patterns stemming from the dynamics of the system, which can be succinctly contained in

convenient parameters.

Either way, there seems to be a multi-layered nature when it comes to the information we

want to unravel about a particle, which is why constructs like state space and configuration

space are instrumental. Equipped with these thoughts, we will now explain what the said

spaces and such constructions physically represent in their philosophical backdrop.

6.1.3 Configuration Space

Physically, it is perhaps easier to begin with positions and states, and only then move to

the more abstract middle ground of configurations, rather than vice-versa.

The positions of particles are Euclidean vectors in a physical i.e. Euclidean space, so

they possess magnitude and direction.2 On the other hand, the particles possess parameters

at each instant of time that change with its motion in physical space.

Now, often, particles are constrained to move only in a region of a Euclidean space RDN .

An example is a body forced to move on a surface. At each moment of time and position

in this constrained region of RDN , the particles can move only in a certain number of

independent ways, called their degrees of freedom. However, since the constrained region

containing the particle is embedded in RDN , locally, the degrees of particles the particle can

’seek out’ must resemble some lower-dimensional Euclidean space RDn, so that they can

move continuously in independent directions and do other things locally that particles do

regardless of constraints.

2An inner product can be constructed from a norm using the polarization identity, thereby endowing the
finite-dimensional Euclidean space in question an inner product.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 21

Claim: Configuration space as a manifold

The space particles are constrained to is the configuration space Q, and it is only

locally required to resemble RDn for some n ≤ N . In general, Q can have a more

complicated global structure as long as it locally ’looks’ Euclidean and these local

Euclidean patches ’stitch together’ smoothly from point to point. Q is therefore said

to be an Dn-dimensional manifold.a

aFormally, a manifold is a topological space in which open neighbourhoods are homeomorphic
to some open neighbourhood in some Euclidean space.

Therefore, regions ’near’ each point (encoded in open neighbourhoods) locally ’look’ like regions
of some Euclidean space and intersections of open neighbourhoods agree up to homeomorphism.
When the transition maps between neighbourhoods are Ck, the manifold is said to itself be Ck i.e.
k times differentiable.

Trivially, any RD is a D-dimensional manifold with the mentioned bijections and transition
maps being identity maps.

Here, a homeomorphism between topological spaces is a structure-preserving map i.e. it is a
continuous bijection that preserves how open neighbourhoods behave via intersections, unions and
so forth.

To summarize, while systems of N particles live in physical space RDN , they can be

constrained to live on Dn-dimensional manifolds (with n ≤ N) i.e. configuration space Q.

And for each configuration
⇀
qqq ∈ Q,3 the particles have states

↪→
ϕ (

⇀
qqq).

3Each configuration vector qqqm lives in the tangent space of Q at some point q ∈ Q i.e. qqqm ∈ TqQ, which
can be defined to be the space spanned by the partial derivatives at q. The intuition for this is that partial
derivatives can be used to build all directional derivatives, the space of which is bijective to the set of all
vectors at that point.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 22

6.2 Some Classifications of Systems

For future purposes, it is convenient to lay down the definitions for particular kinds of

systems, including ones not discussed so far.

Definition 6.2.1: Constrained systems

A system of N particles is constrained when its configuration space Q is a proper

subseta of the physical space it evolves in i.e. Q ⊊ RDN or equivalently, n < N .

aup to homeomorphism; we say that a manifold X is a subset of another manifold Y up to
homeomorphism if there is a submanifold S ⊆ Y such that S is homeomorphic to X.

A system that is not constrained is said to be non-constrained. Now, we consider an

important aspect of dynamical systems, called holonomy,

Definition 6.2.2: Holonomic systems

A system of N particles is holonomic when its state
↪→
ϕ ∈ S for a configuration

⇀
qqq ∈ Q depends only on the configuration and not the path it took in Q i.e. the state

depends only on instantaneous configuration and not the configuration history.

Lemma 6.2.3: Dimensional characterization of holonomy

A system is holonomic iff dim(S) = dim(Q), i.e., m = Dn.

Proof for Lemma

(⇐=)

Suppose for the sake of contradiction that the system concerned is not holonomic i.e.

the state
↪→
ϕ depends on the path taken to reach a configuration

⇀

QQQ. Then, the following

set must have more than one element:

preim⇀
qqq
({

⇀

QQQ}) =
{

↪→
Φ ∈ S :

⇀
qqq (

↪→
Φ) =

⇀

QQQ

}
Therefore, at each configuration

⇀

QQQ ∈ Q, there are at least 2m degrees of freedom

contained in preimages
↪→
Φ1,

↪→
Φ2, . . . ,

↪→
Φf ∈ S ⊆ Rm. We can construct a new space

S̃ ⊆ Rmf where f ≥ 2 so that in this bigger space, the non-injectivity of the state

vanishes and there is a ’unique’ ensemble of states,

Φ̃ =

(
↪→
Φ1,

↪→
Φ2, . . . ,

↪→
Φf

)
S̃
∈ S̃ ⊆ Rmf

Hence, we now know that at each configuration in Q, we can bijectively attach a

state from S̃ which is usually some neighbourhood in some Euclidean space. Therefore,

every open neighbourhood in Q ’looks like’ the Euclidean space corresponding to S̃ in

the topological sense. This informally suggests that,

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 23

dim(Q) = dim(S̃)

Therefore, we must at least have dim(Q) = mf ̸= m. Since dim(S) = m, it must be

the case that when the system is not holonomic, dim(Q) ̸= dim(S). This is equivalent

to the contrapositive implication that when dim(Q) ̸= dim(S), the system described is

holonomic.

(=⇒)

When a system is holonomic, much like in the above argument, we can attach to

each configuration
⇀

QQQ ∈ Q a state
↪→
Φ, but by the definition of holonomy, it must be an

instantaneous state and not an ensemble,∣∣∣∣preim⇀
qqq
({

⇀

QQQ})
∣∣∣∣ = ∣∣∣∣{↪→

Φ ∈ S :
⇀
qqq (

↪→
Φ) =

⇀

QQQ

}∣∣∣∣ = 1

Since Q and S ’look alike’ locally, we now have dim(Q) = dim(S). We have thus

shown that holonomy implies the said equality, and the converse is true too, which proves

the logical equivalence of the two statements. ■

We define a system to be non-holonomic when it is not holonomic. Equivalently,

such systems obey dim(Q) ̸= dim(S), i.e., Dn ̸= m. Furthermore, we have the following

terminology and equivalent formulation of non-holonomy using it.

Definition 6.2.4: Loop

A loop in a topological spaceX is a continuous curve Γ : [0, 1] → X with Γ(0) = Γ(1).

Equivalently, via continuous maps λ : R → [0, 1], a loop is a curve γ = Γ◦λ : R →M

such that there exists a T ∈ R such that γ(t) = γ(t+ nT) for all t ∈ R, n ∈ Z. a

aAnother way of saying this is that γ can be identified after every so-called time period T .

Claim: Loops as continuous deformations of S1

continuous maps φ from the unit circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} to X

sufficiently characterize loops.

Proof for Claim.

Let ξ : [0, 1] → S1 be the periodic, continuous map ξ(λ) = (cos(λ), sin(λ)). Hence,

γ = φ ◦ ξ : [0, 1] → X is a continuous map with γ(0) = γ(1) i.e. a loop. ■

R X

[0, 1] S1

λ

Γ
γ

ξ

φ

Figure 6.2: Loops in a topological space X defined using various spaces.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 24

Theorem 6.2.5: Loop characterization of non-holonomy

A system is non-holonomic iff there exists a loop C in the configuration space Q such

that the system’s state changes (by a non-zero amount) when it traverses a full cycle

along the loop.

Proof. (⇐=)

Consider the closed loop C described above. If the system starts at a coonfiguration
⇀
qqq

with state
↪→
ϕ 0 and traverses along the loop, by definition, the configuration returns to

⇀
qqq and

yet, by construction, the final state
↪→
ϕ 1 ̸=

↪→
ϕ 0. Hence, the state

↪→
ϕ depends on the history

of the curve traversed to reach the concerned configuration
⇀
qqq . By definition, the system is

non-holonomic. We can extend the above observation to n cycles of traversal along C, giving

rise to potentially different states
↪→
ϕ n. This is a special case of a loop space consideration

we will construct in the next subsection.

(=⇒)

Let the system in question be non-holonomic as defined earlier. Let γ1, γ2 ∈ C(R,Q) =

QR ∩C(R) be distinct continuous curves4 from a configuration
⇀
qqq 1 ∈ Q to another configu-

ration
⇀
qqq 2 ∈ Q. Equivalently, using a continuous map t : [0, 1] → R, we have curves Γ1,Γ2

defined using Γi = γi ◦ t, such that γi(0) =
⇀
qqq 1, γi(1) =

⇀
qqq 2 for i = 1, 2. Non-holonomy

guaruntees that there exists such a pair of curves with the same endpoints such that,

∫
γ1

d
↪→
ϕ ̸=

∫
γ2

d
↪→
ϕ∫

γ1

d
↪→
ϕ −

∫
γ2

d
↪→
ϕ ̸=

↪→
0

Let us formally define the ’reverse’ of a curve as follows:

Γ̃i :

[0, 1] → Q

λ 7→ Γi(1− λ)

Correspondingly,

γ̃i :

R → Q

t 7→ γi(t2 − t)

where γi(t2) =
⇀
qqq 2.

By the fundamental theorem of calculus, interchanging the limits of an integral, or

equivalently, reversing the curve of intergation, reverses the signature of the said integral5.

4The notation BA denotes the space of all functions f : A → B which is an abuse of notation based on
the fact that the cardinality of BA is, in fact, |B||A|.

Therefore, BA ∩ Cn(A) denotes the space of all k-times differentiable functions A → B, for which we
choose the alternative notation Ck(A,B).

5As a corollary, even in a non-holonomic situation, it is guarunteed that loops of the form γ̃ ∗ γ bring

back the state
↪→
ϕ to its original value as the changes are cancelled out by the first traversal and then its

retrograde version.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 25

Hence, ∫
γ̃i

d
↪→
ϕ = −

∫
γi

d
↪→
ϕ

Substituting this into the second term of the first relation we derived from non-holonomy

above, we find, ∫
γ1

d
↪→
ϕ +

∫
γ̃2

d
↪→
ϕ ̸=

↪→
0

But the above integration is the same as along the concatenation of the paths γ1 and γ̃2

i.e. the loop γ̃2 ∗ γ1 where concatenation ∗ : C(R,Q)× C(R,Q) → C(R,Q) is defined by,

(Γ2 ∗○Γ1)(λ) =

Γ1(2λ) λ ∈
[
0, 12

]
Γ2(2λ− 1) λ ∈

[
1
2 , 1
]

By construction we must have, Γ1(1) = Γ2(0). Thus, Γ2 has been ’stitched’ to the end

of Γ1 in a continuous manner. Correspondingly,

γ̃2 ∗ γ1 = (γ̃2 ∗○Γ1) ◦ λ

=

γ1(2t) t ∈
[
t1,

t2−t1
2

]
γ̃2(2t− t1) t ∈

[
t2−t1

2 , t2
]

with γ1(t2) = γ̃2(t1), which is valid since by construction γ1(t2) = γ̃2(t1) =
⇀
qqq 2.

The key takeaway from the above discussion is that curves can be concatenated and this

corresponds to the addition of integrals along them6,

∮
γ̃2∗γ1

d
↪→
ϕ =

∫
γ1

d
↪→
ϕ +

∫
γ̃2

d
↪→
ϕ

̸=
↪→
0

Therefore, non-holonomy implies the existence of loops along which states can change.

This completes the proof that non-holonomy is equivalent to this property of state change

over closed paths in Q.

Corollary 6.2.6

A system is holonomic iff for every loop γ : R → Q, traversal along it does not change

the state
↪→
ϕ i.e., ∮

γ

d
↪→
ϕ =

↪→
0

6These notions indicate that path reversal is like an inverse operation and the paths themselves look like
groups with a concatenation operation, which leads to structures such as homotopy groups and the larger
discipline of algebraic topology.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 26

Below are some diagrams which depict the kinds of concatenation mentioned above.

Figure 6.3: A one-dimensional representation of curves and their reversals and concatena-
tions

Figure 6.4: Concatenating curves with fixed enpoints generates loops.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 27

6.3 Loop Spaces

6.3.1 Based, Unbased and Free Loop Spaces

To formalize the notion of ’every loop’, we define loop spaces.

Definition 6.3.1: (Based) loop space

The based loop space or simply, loop space L⇀
qqq

at a configuration
⇀
qqq ∈ Q is a

map Q → C([0, 1],Q) such that,

L⇀
qqq
=
{
γ ∈ C([0, 1],Q) : γ(0) = γ(1) =

⇀
qqq
}

A loop space in which the identified endpoints of loops are not restricted to be a base

configuration, so that any point in the loop can be the base configuration, is called an

unbased loop space at that configuration,

Definition 6.3.2: Unbased loop space

The unbased loop space L⇀
qqq
at a configuration

⇀
qqq ∈ Q is a map Q → C([0, 1],Q)

defined as,

L⇀
qqq
=
{
γ ∈ C([0, 1],Q) : γ(0) = γ(1),

⇀
qqq ∈ γ

}
Trivially, every based loop space is a subset of a corresponding unbased loop space.

These notions become equivalent under translation equivalence in the parameter space [0, 1]

since such translations ’turn’ a loop around to set the identified endpoint γ(0) = γ(1) to be

the base configuration
⇀
qqq .

The loop spaces at all points in the configuration space can be collected together into a

free loop space,

Definition 6.3.3: Free loop space

The free or total loop space ΩQ is the union of loop spaces of all configurations,

ΩQ =
⋃
⇀

qqq∈Q

L⇀
qqq
= {γ ∈ C([0, 1],Q) : γ(0) = γ(1)}

It can be shown that the free loop spaces for based and unbased loops are equal. This is

because every unbased loop passing through a configuration is a based loop in some other

loop space and vice-versa, so collecting all loops together does not ’remember’ if they were

based or unbased.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 28

Starting with the free loop space, one can construct unbased and then based loop spaces

using projections, which are defined as follows,

Definition 6.3.4: Projection

A projection from a set A to a subset U is a surjection π : A → U such that π is

idempotent, i.e., π ◦ π = idU .

If A is a topological spacea, π is also continuous.

aU would then be equipped with the subset topology with respect to that of A.

Intuitively, a projection projects a space down to a subspace and destroys as much infor-

mation in the process as possible, so that applying the projection again has no incremental

effect. It trivially follows from the definitions of the various loop spaces listed above that

they can be projected into one another:

Claim: Loop space projections

1. ΩQ
π⇀

qqq→ L⇀
qqq
where,

π⇀
qqq
(ΩQ) =

{
γ ∈ ΩQ :

⇀
qqq ∈ γ

}
= L⇀

qqq

2. L⇀
qqq

π→ L⇀
qqq
with,

π(L⇀
qqq
) =

{
γ ∈ L⇀

qqq
: γ(0) =

⇀
qqq
}
= L⇀

qqq

Therefore, building ’up’ from based loop spaces to unbased and free ones is equivalent

to building ’down’ in the reverse order. When loop spaces are equipped with topologies,

(ΩQ, π⇀
qqq
,L⇀

qqq
) and (L⇀

qqq
, π,L⇀

qqq
) become bundles.7

With these ideas in mind, we can formally revisit the concatenation of loops.

7Given a continuous projection π : A → U , a bundle is the triplet (A, π, U) where A is called the total
space and U is the base space. Over every p ∈ U lives a corresponding fibre, defined as Fp = preimπ({p}).

For the bundles described with regard to loop spaces, when the total space is the free loop space ΩQ,

the fibre over each unbased loop γ ∈ L⇀
qqq

is Fγ =
{
δ ∈ ΩQ :

⇀
qqq ∈ δ =⇒ δ = γ

}
= L⇀

qqq
i.e. every fibre is

identically the unbased loop space. We thus say that (ΩQ, π⇀
qqq
,L⇀

qqq
) is a fibre bundle with a typical fibre

F = L⇀
qqq
.

Similarly, when an unbased loop space L⇀
qqq

is the total space, the fibre living on a based loop γ ∈ L⇀
qqq

is

Fγ =
{
δ ∈ L⇀

qqq
: δ(0) =

⇀
qqq =⇒ δ = γ

}
= L⇀

qqq
. Therefore, once again, (L⇀

qqq
, π,L⇀

qqq
) is a fibre bundle with

the typical fibre being the based loop space.
These notions formalize the idea of unbased/based loop spaces ’living on’ the unbased/based loops in them.

Since unbased/based loops correspond in a one-to-one manner with the configurations in them/endpoint
configurations respectively, we can also construct appropriate bundles with loop spaces living over the
configuration space.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 29

6.3.2 Concatenation

Definition 6.3.5: Concatenation

Concatenation ∗ : L⇀
qqq
× L⇀

qqq
→ L⇀

qqq
is the operation:

γ2 ∗ γ1 =

γ1(2λ) λ ∈
[
0, 12

]
γ2(2λ− 1) λ ∈

[
1
2 , 1
]

Since every based loop is an unbased loop, we can extend concatenation similarly to

unbased loop spaces. The mathematical significance of concatenation is that it helps form

a group,

Claim: (L⇀
qqq
, ∗) as a non-Abelian group

• It can be verified that (L⇀
qqq
, ∗) is a group since it obeys the group axioms:

1. L⇀
qqq
is closed under ∗ i.e.,

∀γ1, γ2 ∈ L⇀
qqq
: γ2 ∗ γ1 ∈ L⇀

qqq

2. ∗ is associative,

∀γ1, γ2, γ3 ∈ L⇀
qqq
: γ3 ∗ (γ2 ∗ γ1) = (γ3 ∗ γ2) ∗ γ1

3. There is an identity or constant loop γe ∈ L⇀
qqq
,

∀γ ∈ L⇀
qqq
: γe ∗ γ = γ ∗ γe = γ

where γe(λ) =
⇀
qqq .

4. Every loop γ ∈ L⇀
qqq
has an inverse γ̃ ∈ L⇀

qqq
(the same as reversed loops),

∀γ ∈ L⇀
qqq
: ∃ γ̃ ∈ L⇀

qqq
: γ̃ ∗ γ = γ ∗ γ̃ = γe

• (L⇀
qqq
, ∗) is a non-Abelian group as ∗ is non-commutative, i.e,

γ1, γ2 ∈ L⇀
qqq

/=⇒ γ1 ∗ γ2 = γ2 ∗ γ1

Due to the above facts, concatenation provides an algebraic structure to loops, which are

geometric objects. This allows one to treat the loops in a way in which they algebraically

encode topological information about the configuration space Q, such as how many holes

it may have. Such notions are the subject of topological invariants, homotopy theory and

algebraic topology in general.

Now that we have seen how loops come up in holonomy theory and how they lead to

various disciplines, let us return to their role in the study of non-holonomic systems in

classical mechanics.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 30

6.3.3 Relationship With State Spaces

Recall that for non-holonomic systems, states
↪→
ϕ cannot be uniquely characterized by config-

urations
⇀
qqq as new states can be generated at the same configuration by making the system

travel along loops C ∈ L⇀
qqq
. But this also means:

Theorem 6.3.6: Isomorphism of state and loop spaces

The state space at a configuration
⇀

QQQ ∈ Q is isomorphic to the associated based loop

space L⇀

QQQ
,

preim⇀
qqq
({

⇀

QQQ}) =
{

↪→
Φ ∈ S :

⇀
qqq (

↪→
Φ) =

⇀

QQQ

}

=


∮
γ∈L⇀

QQQ

d
↪→
ψψψ :

↪→
ψψψ ∈ S

 ∼= L⇀

QQQ

Proof. From the equation part of the above statement, we can glean that since every state

at a configuration is specified by some based loop, the state space at the configuration must

be a subset of the based loop space, up to isomorphism.

But no two distinct based loops γ1, γ2 generate the same state since if they did, one

could traverse along γ̃2 ∗ γ1 and not change the state, so this concatenated loop must be

the constant loop γe =
⇀

QQQ which is not necessary (in fact, it only happens when γ1 = γ2).

Hence, the based loop space is a subset of the state space up to isomorphism.

The two situations above prove the claim.

The intuition for the above statement is that every distinct based loop at a configuration

generates a distinct state, and since there are no other variables involved, the only states at

the configuration are those generated by loops in this manner. As a result, the entire state

space is bijective to the free loop space.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 31

Corollary 6.3.7

The state space S is isomorphic to the free loop space ΩQ associated with the

configuration space Q,

S = preim⇀
qqq
(Q) ∼= ΩQ

Proof. We have,

preim⇀
qqq
(Q) = preim⇀

qqq

 ⋃
⇀

QQQ∈Q

{
⇀

QQQ}


=
⋃

⇀

QQQ∈Q

preim⇀
qqq
({

⇀

QQQ})

∼=
⋃

⇀

QQQ∈Q

L⇀

QQQ
= ΩQ

Therefore, loops not only unite topological and algebraic aspects of manifolds

such as Q, but also provide a description of the state space S living on the con-

figuration space! This also means that states in any physical system can be represented

by loops, which can be extended into extensive formalisms such as Wilson loops in field

theory and spin networks in loop quantum gravity.

In fact, the loop space consideration formalizes what it means for the state

space to ’live on’ the configuration space in the first place, via topological bundles.

In footnote 7, we have shown how loop spaces and their projections define bundles. We can

consider this for the collection of all loop spaces i.e. the free loop space ΩQ and find that:

Claim: State and configuration spaces form bundles

(ΩQ,Π,Q) is a bundle where the projection Π : ΩQ → Q is defined by,

Π⇀
qqq
= π⇀

qqq
◦ π ◦ σ

Π(ΩQ) =
{
Π⇀

qqq
(ΩQ) :

⇀
qqq ∈ Q

}
= Q

where,

{σ(⇀qqq)} =
{
γ(0) : γ ∈ L⇀

qqq

}
i.e., σ(

⇀
qqq) = γ(0) for any γ ∈ L⇀

qqq
.

All the maps involved above are projections, therefore so are their compositions and

unions over subspaces, implying that Π is a projection.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 32

Pictorially, the above mechanism can be represented using the commutative diagram

below:

ΩQ L⇀
qqq

L⇀
qqq

S ⇀
qqq

φ−1

Π⇀
qqq

π⇀
qqq π

σφ

Π⇀
qqq
◦φ

Figure 6.5: Projections between loop spaces and the configuration space, as well as the
isomorphism of the free loop space and the state space. All the arrows with their nodes in
this diagram are bundles.

But since ΩQ ∼= S, there exists a homeomorphism φ : S → ΩQ. Therefore, (ΩQ,Π,Q)

being a bundle also implies that (S,Π ◦ φ,Q) is a bundle. Thus, states live over config-

urations in a concrete topological sense!

6.3.4 Philosophy

The reasons we discussed the above coming together of various ideas somewhat elaborately

are as follows:

1. The above kind of framework, which forms the basis of non-holonomic mechan-

ics, lays a foundation for studying the theoretical mechanics of systems exhibiting

non-holonomy as well as the subclass of systems where non-holonomy disappears i.e.

holonomic systems.

2. The general N-body problem involves collisions, in which non-holonomy plays a fun-

damental role.

3. Periodic solutions in N-body problems are C2 loops in configuration space, therefore

topological notions to do with them, such as the stability of their perturbations,

involve algebraic topology.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 33

6.4 Constraints

6.4.1 Classification

A constraint is a relationship between the generalized coordinates and potentially, its deriva-

tives, that may have the effect of restricting a system to a submanifold of the ambient

Euclidean space (although this is uncommon for velocity-dependent constraints).

A constraint only involving generalized position and time, but no derivatives of the

former, is said to be holonomic,

Definition 6.4.1: Holonomic constraint

A holonomic constraint is a relationship involving a function f : Q×R → R such

that,

f(
⇀
qqq , t) = 0

A constraint that does not involve time is called scleronomous. Constraints that, on

the other hand, involve time, are said to be rheonomous. A constraint that cannot be

written in the holonomic form is called a non-holonomic constraint.

Remark.

A system having a holonomic constraint does not imply that it is holonomic, but nonethe-

less enables us to test if it is holonomic, as we will see.

Two important generalizations of holonomic constraints are those of semi-holonomic and

Pfaffian constraints.

Definition 6.4.2: Semi-holonomic constraint

A semi-holonomic or velocity-dependent constraint is one which can be writ-

ten, using some map f : Q× TQ× R, as:

f

(
⇀
qqq ,
d
⇀
qqq

dt
, t

)
= 0

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 34

It will be shown that semi-holonomic constraints are further generalized by Pfaffian

constraints,

Definition 6.4.3: Pfaffian constraint

A Pfaffian or semi-holonomic constraint is one which can be written in the form,

A(d
⇀
qqq) +Atdt = 0

where the quantity on the left hand side is the Pfaffian form applied to tangent

vectors of Q as well as differentials of time,

A(d
⇀
qqq) +Atdt =

n∑
α=1

Aα(dqqqα) +Atdt

=

n∑
α=1

Aα

(
f∑

i=1

dqαieeei

)
+Atdt

=

n∑
α=1

f∑
i=1

dqαiAα (eeei) +Atdt

=

n∑
α=1

f∑
i=1

Aαidqαi +Atdt

= Aαidq
αi +Atdt [= 0]

In the last line above, we have used the Einstein summation convention where dummy

indices (pairs of identical upper and lower indices) imply summation over them. The object

A is a collection of 1-forms Aα i.e. linear maps Aα : TqQ → R and At is a 0-form i.e. a

scalar.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 35

Lemma 6.4.4: Semi-holonomic constraints are Pfaffian

All semi-holonomic constraints are Pfaffian.

Proof for Lemma

f

(
⇀
qqq ,
d
⇀
qqq

dt
, t

)
= 0

f(qqq1, . . . , qqqn, q̇qq1, . . . , q̇qqn, t) = 0

f(q11, . . . , q1f , . . . , qn1, . . . , qnf , q̇11, . . . , q̇1f , . . . , q̇n1, . . . , q̇nf , t) = 0

Let f in summation limits denote dim(Q). Now, we can take the differential of the

above equation to find, using the multivariable chain rule and the Einstein summation

convention,

df = 0

∂f

∂qαi
dqαi +

∂f

∂q̇αi
dq̇αi +

∂f

∂t
dt = 0

∂f

∂qαi
dqαi +

∂f

∂q̇αi
dq̇αi

dt
dt+

∂f

∂t
dt = 0

∂f

∂qαi
dqαi +

(
∂f

∂q̇αi
q̈αi +

∂f

∂t

)
dt = 0

Plugging in the Pfaffian constraint,

∂f

∂qαi
dqαi +

(
∂f

∂q̇αi
q̈αi +

∂f

∂t

)
dt = Aαidq

αi +Atdt

By multilinearity,

Aαi =
∂f

∂qαi

At =
∂f

∂q̇αi
q̈αi +

∂f

∂t

In coordinate-free language, we can write the spacelike part of the Pfaffian form at a

configuration
⇀
qqq ∈ Q in terms of the gradient of f at that point,

A = df

But from the semi-holonomic constraint, we have df = 0. Hence, A = 0, which is a

Pfaffian constraint. ■

Furthermore, all holonomic constraints are trivially semi-holonomic constraints involving

vanishing functions f : Q×TQ×R → R that do not explicitly depend on generalized velocity.

But since semi-holonomic constraints are Pfaffian, so are holonomic constraints.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 36

6.4.2 Homotopic Notions

The above principles can be extended to find when a Pfaffian constraint is semi-holonomic.

Lemma 6.4.5: Poincaré’s lemma

Let the configuration spaceQ be a contractible manifold. This is a sufficient condition

for the Pfaffian form A being closed (i.e. dA = 0, which follows from the Pfaffian

constraint A = 0) to imply that it is exact i.e. there is a function f : Q×TQ×R → R
such that A = df = 0, which is a semi-holonomic constraint.a

The above statement, equivalent to Poincaré’s lemma, says, in other words, that

every Pfaffian constraint is semi-holonomic ifb Q is contractible.

aMoreover, if A does not explicitly depend on generalized velocity, the constraint is holonomic.
bnot to be confused with if and only if.

Proving Poincaré’s lemma, and in fact, defining contractible manifolds, relies on homo-

topy theory. In this subsection, we will briefly describe certain aspects of the theory and

see what they entail for Poincaré’s lemma.

Definition 6.4.6: Homotopy equivalence of curves

Let γ1, γ2 ∈ C([0, 1],Q) be two curves with the same endpoints, i.e.,

γ1(0) = γ2(0)

γ1(1) = γ2(1)

Then, γ1 ∼ γ2 i.e. the two curves are said to be homotopic or homotopy equiva-

lenta iff one is continuously deformable into the other, i.e. there exists a continuous

function h : [0, 1]× [0, 1] → Q called a homotopy such that,

h(0, λ) = γ1(λ)

h(1, λ) = γ2(λ)

aA related construct is the fundamental group at a configuration
⇀
qqq ∈ Q i.e., (π1(

⇀
qqq), •) where

π1(
⇀
qqq) = (L⇀

qqq
)/ ∼ is the quotient set of homotopy classes [γ] and γ1 • γ2 is the homotopy class

[γ1 ∗ γ2].

Thus, homotopy equivalence formalizes the notion of one curve being continuously de-

formable into another. This notion of equivalence extends to topological spaces, generalizing

homeomorphisms. Let X,Y be topological spaces and f : X → Y and g : Y → X be con-

tinuous maps. X and Y are homeomorphic when g ◦ f = idX and f ◦ g = idY .

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 37

However, more generally, A and B are homotopic when the above maps are homotopy

equivalent, and not necessarily equal,

Definition 6.4.7: Homotopy equivalence of topological spaces

Two topological spaces X,Y are homotopic or homotopy equivalent if there

exist continuous maps f ∈ C(X,Y) and g ∈ C(Y,X) such that g ◦ f ∼X idX and f ◦
g ∼Y idY where∼X ,∼Y respectively denote homotopy equivalence under homotopies

hX : [0, 1]×X → X and hY : [0, 1]× Y → Y , i.e.,

hX(0, x) = x

hX(1, x) = g(f(x))

hY (0, y) = y

hY (1, y) = f(g(y))

In other words, X and Y are homotopic when X can be mapped to Y and then back to

X in a manner (encoded in g ◦ f) which is continuously deformable to the situation where

X is mapped to itself; and vice-versa from Y to X and back to Y . Intuitively, this means

that the two spaces can be mapped to each other via bending, shrinking amd stretching

operations that need not be structure-preserving but are still similar to homeomorphisms.

X YidX

f

idY

g

Figure 6.6: The setting for two topological spaces X,Y to be homotopic.

Trivially, two homeomorphic topological spaces are also homotopic in a structure-preserving

way, but the converse is not necessarily true. These ideas allow us to define contractible

manifolds.

Definition 6.4.8: Contractible spaces

A contractible space is a topological space which is homotopic to a one-point space

{⋆}.
A contractible manifold is a manifold that is also contractible.

Intuitively, a space is contractible when it can be continuously contracted to a point in

it. This is encoded in the following equivalent definition for contractibility.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 38

Claim: Null-homotopic characterization of contractibility

A space X is contractible iff idX is null-homotopic i.e. homotopic to some con-

stant map f : X → {⋆} where ⋆ ∈ X.

Proof for Claim.

(=⇒)

Let g : {⋆} → {⋆} ⊂ X. So, g ◦ f = f and f ◦ g = id{⋆}.

Now, let X be contractible. Then, by definition, g ◦ f = f ∼ idX . Therefore, idX is

null-homotopic.

(⇐=)

By similar reasoning as above, if idX is null-homotopic, by definition, f = g◦f ∼ idX .

Moreover, trivially, id{⋆} = f ◦ g ∼ id{⋆}. Hence, X is contractible. ■

X {⋆}idX

f

g|{⋆} = id{⋆}

g

Figure 6.7: Setup for a contractible topological space X.

Remark.

Examples of contractible spaces are one-point spaces (trivially), Euclidean spaces, star-

shaped domains in Euclidean spaces, and any other manifold which can be ’continuously

contracted to a point’.

An example of a non-contractible space is any finite-dimensional sphere (trying to shrink

one continuously to a point destroys its global topology).

It turns out that a deeply related concept in algebraic topology is that of holes (with

which much of the work in homotopy and homology theories began). Combined with no-

tions of connectedness, we gain further understanding of what it means for spaces to be

contractible.

Definition 6.4.9: Hole

A topological space X is said to have a hole with a d-dimensional boundary iff there

is a continuous map φ : Sd → X such that φ
(
Sd
)
⊆ X is not contractible, where Sd

is some d-dimensional closed ball of radius R,

Sd = {x ∈ Rd : ∥x∥ ≤ R}

Intuitively, the above definition says that when there is a region in X that ’looks like’

a sphere topologically (i.e. is the image of a sphere under a continuous, surjective map φ)

but cannot be contracted smoothly to a point, there must be a hole enclosed within the said

region which has ’nothing’, hence the non-contractibility.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 39

When a topological space has a hole, some open neighbourhoods in it might be ’discon-

nected’ from each other due to the hole. This motivates us to define the more general notion

of connectedness, and its stronger variants.

Definition 6.4.10: Connectedness

A topological space X is connected unless there exist two non-empty non-

intersecting neighbourhoodsa U, V ⊊ X such that X = U ∪ V .

ahence, U ∩ V ̸= ∅

When a space is connected, it therefore contains no mutually disjoint, non-empty neigh-

bourhoods whose union is the entire space. A space that is not connected is disconnected.

Theorem 6.4.11: Clopen characterization of connectedness

A topological space X is connected iff the only clopen neighbourhoodsa in it are X

and ∅.
aLet X be equipped with a topology O ∈ P(X). A clopen neighbourhood U ⊆ X is a region

that is both open i.e. in O and closed i.e. with an open complement X\U ∈ O.

Proof. (=⇒)

For the sake of contradiction, let X be connected and let there exist a non-empty clopen

neighbourhood U ∈ O (so X\U ∈ O) such that U ̸= X. Since U ∩ (X\U) = ∅ and

U ∪ (X\U) = X, X is by definition not connected, which is a contradiction.

(⇐=)

Let X be not connected. Then, there exist non-empty disjoint open neighbourhoods

U, V ∈ O with X = U ∪ V . We cannot have U = X, as it would follow that V = ∅,
contradicting non-connectedness. Furthermore, U is closed as V = X\U ∈ O. Hence, U is

clopen but neither equal to X nor to ∅.

It immediately follows from the above fact that the unit interval is connected.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 40

Theorem 6.4.12: Connectedness of the unit interval

The unit interval [0, 1] equipped with the subset topologya from R is connected.

aThe standard topology Os,R on R is characterized by neighbourhoods U ⊆ R being open iff
for every point x ∈ U , there exists a radius r ∈ R+ such that the open ball of that radius centred
at x is entirely within the neighbourhood i.e. Bx(r) ⊆ U . It can be shown that Os,R satisfies the
neighbourhood axioms.

Furthermore, the set of all open balls {Br(x) : r ∈ R+, x ∈ X} is a basis for Os,R i.e. any open
neighbourhood U ∈ Os,R can be constructed using unions of open balls.

The topology a subset A ⊆ R inherits from Os,R is the standard subset topology Os,R
∣∣
A

defined as follows. A neighbourhood V ⊆ A is in Os,R
∣∣
A

iff there is some U ∈ Os,R such that

V = U ∩A. Equivalently, Os,R
∣∣
A

= {U ∩A : U ∈ Os,R}.
It turns out that just like open balls constitute a basis for Os,R, open balls in R intersected with

A form a basis for Os,R
∣∣
A
. These are either open intervals in [0, 1] or clopen intervals of the form

[0, a) or [a, 1) where a ∈ [0, 1].

Proof. Recall that the basis for Os,R
∣∣
[0,1]

comprises of open intervals in [0, 1] as well as

intervals of the form [0, a) and (a, 1] for a ∈ [0, 1].

Now, the complements of open intervals (a, b) with a, b ∈ (0, 1) are of the form [0, a] ∪
[b, 1]. Since none of these closed intervals are open, neither are their unions (which is a

neighbourhood axiom). Hence, no such open interval can also be closed.

Similarly, complements of clopen intervals [0, a) and (b, 1] are respectively of the form

[a, 1] and [0, b], which are again not open. The only way unions of basis intervals can be

closed, then, are as follows.

• An empty union of the basis elements gives the open set ∅, which is also closed as

[0, 1]\∅ = [0, 1] is open.

• Overlapping intervals of the latter kind i.e. [0, a) and (b, 1] with a > b combine to

form the entire unit interval, [0, a) ∪ (b, 1] = [0, 1], which is open. But [0, 1]\[0, 1] = ∅
is open too, hence [0, 1] is clopen.

Thus, [0, 1] and ∅ are the only clopen neighbourhoods in [0, 1], making the unit interval

connected by the clopen characterization of connectedness.

A stricter notion than connectedness is when every pair of points in the space can be

connected by some continuous curve,

Definition 6.4.13: Path connectedness

A topological space X is path connected iff any two points x, y ∈ X have a

continuous curve γ ∈ C([0, 1], X) joining them i.e.,

γ(0) = x

γ(1) = y

Alternatively, one can define an equivalence relation called the path component ≡ for

two points x, y ∈ X when such curves joining them exist. The induced equivalence class [x]

is the path connected component of x, Px(X).

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 41

Furthermore, π0(X) = (X/ ≡) = {Px(X) : x ∈ X} is the quotient set of all the path

components in X, called its path connected component or zeroeth homotopy group.

Then, X is path connected iff its path connected component is trivial i.e. has exactly one

element (so that all x ∈ X is path component equivalent to all y ∈ Y). This construction

will be useful for defining simple connectedness.

Lemma 6.4.14: Path connectedness implies connectedness

If a topological space X is path connected, it must be connected.

Proof for Lemma

Suppose for the sake of contradiction that X is path connected but not connected.

Then, there exist non-empty open neighbourhoods U, V ⊊ X such that U ∩ V = ∅ and

U ∪ V = X. Now, we choose two points x ∈ U, y ∈ V . By path connectedness, there is

a curve γ ∈ C([0, 1], X) such that γ(0) = x and γ(1) = y. Hence, we can write the unit

interval as,

[0, 1] = preimγ(X)

= preimγ(U ∪ V)

= preimγ(U) ∪ preimγ(V)

The subsets preimγ(U) and preimγ(V) are open (as γ is continuous), and due to the

nature of U and V , non-empty and mutually disjoint. Hence, [0, 1] is not connected,

which contradicts the connectedness of the unit interval. ■

There is a yet stronger notion of connectedness, called simple connectedness.

Definition 6.4.15: Simple connectedness

A topological space X is simply connected iff it is path connected and for any

x, y ∈ X, the set of all paths connecting these points, κ(x, y), is a homotopy classa

whereb,

κ(x, y) = {γ ∈ C([0, 1], X) : γ(0) = x, γ(1) = y}
aEquivalently, the fundamental group π1(x) is trivial i.e. only contains the homotopy class

[γe(x)]. The intuition for this is that in the case of simple connectedness, homotopic curves in path
components at x can be concatenated to form loops, all of which are homotopic to the constant
loop γe(x) : [0, 1] → {x}.

bThus, another way to characterize path component equivalence is x ≡ y ⇐⇒ κ(x, y) ̸= ∅. When
this is true under the universal quantifier (∀ x, y ∈ X), we have path connectedness.

In other words, X is simply connected when all the curves in κ(x, y) are homotopic i.e.

all paths connecting all pairs of points in X are homotopic. Intuitively, this means not not

only is every pair of points path connected, but also in a way that every such path can be

continuously deformed into one another without running into holes or gaps between islands.

Now, we have the following theorem which strongly link notions of connectedness to ho-

motopy equivalence. It is also one of the reasons homotopy is an instrumental generalization

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 42

of homeomorphism. While topological structure itself is homeomorphism invariant, specific

aspects such as connectedness (which do not provide all the structural information about

a topological space but ’enough’ depending on the context) are, more weakly, homotopy

invariant. For brevity, we will not prove this property of topological spaces.

Theorem 6.4.16: Simple connectedness, path connectedness

and connectedness are homotopy invariant

Suppose X and Y are homotopic spaces, then X is simply connected iff Y is also

simply connected, and the same homotopy invariance applies to path connectedness

and connectedness.

Corollary 6.4.17

If a topological space X is contractible, it must be simply connected.

Proof. Let X be contractible. Then, by definition, X is homotopic to a one-point space

{⋆} where ⋆ ∈ X.

Now, the only topology {⋆} can be equipped with is the associated chaotic or indiscrete

topology8 O⋆ = {∅, {⋆}}. It follows that any map γ : [0, 1] → {⋆} is continuous no matter

the topology of [0, 1],

preimγ(∅) = ∅ ∈ O⋆

preimγ([0, 1]) = {⋆} ∈ O⋆

In other words, it follows from the range {⋆} having a discrete topology that no matter

the topology of the domain [0, 1], every open image has an open preimage i.e. the arbitrary

function (in this case a curve) is in C([0, 1], {⋆}).
The significance of this is that the set of all C1 curves joining points x, y ∈ {⋆} is the

same as those joining, by definition, ⋆ to itself, and this set of joining curves only contains

the constant curve γe : [0, 1] → {⋆},

∀ x, y ∈ {⋆} : κ(x, y) = {γe}

But since any curve is homotopic to itself, the above is also a homotopy class. By defi-

nition, the one-point space {⋆} is simply connected. Now, recall that the contractible space

X is by definition homotopic to the one-point space mentioned. Furthermore, consider the

homotopy invariance of simple connectedness. It follows that X must be simply connected

too.

8so called as a topological space X equipped with the chaotic topology O = {∅, X} has the property
that any sequence A : N → X trivially converges at every point x ∈ X in it since for all n ∈ N, A(n) ∈ X
which is always an open neighbourhood of x by definition.

For a single point space {⋆} ⊆ X, any topology is trivial and hence, the chaotic topology and the discrete
topology P({⋆}) — so called as every singleton in a set X is open in the discrete topology P(X) — are
identical.

CHAPTER 6. APPENDIX A: GENERAL N-BODY PROBLEM 43

Corollary 6.4.18

Contractible spaces are path connected and connected.

Proof. From the previous corollary, contractible spaces are simply connected. From the

definition of simple connectedness, the property also implies path connectedness. Finally,

recall that path connectedness implies connectedness.

This is whence we return to the topic of holes, which are related to contractible spaces

and hence Pfaffian and semi-holonomic constraints via Poincaré’s lemma. It turns out that

when a manifold is contractible, it has no holes (as, by definition, a manifold with a hole

would contain a neighbourhood which is not contractible). Contrapositively, a manifold

with holes is not contractible. Therefore, a manifold with holes has no general sufficient

condition for every Pfaffian constraint A = 0 to be a semi-holonomic constraint A = df = 0.

Chapter 7

Appendix B: Python Code

44

[]: import numpy as np
import matplotlib.pyplot as pyplot

#Important stable states
if(False):

ziling,sid,avery = 1.0,1.0,1.0
x = np.array([-1,0,1])
y = np.array([-1,0,1])
z = np.array([0,0,0])
vx = np.array([1,0,-1])
vy = np.array([-1,0,1])
vz = np.array([0,0,0])

if(True):
ziling,sid,avery = 1.0,0.5,2.0
x = np.array([-1,0,0])
y = np.array([-1,0,1])
z = np.array([0,0,1])
vx = np.array([0,0,0])
vy = np.array([-1,0,1])
vz = np.array([0,-1,0])

[]: import numpy as np
import matplotlib.pyplot as pyplot

#Hi this is Zi, they locked me up to write code, so instead of explain␣
↪→everything to you in the report

#I will explain them here in my code
#This block is where the set up for all the initial condition and the constants␣
↪→happen

#Gravitational constant
g = 3
delta_t = 0.0001

#three masses
#in this case we are working with the three groupmembers in space
#imagine they are perfect point masses
#ziling,sid,avery = 1.0,1.0,2.0
m = np.array([ziling,sid,avery])

#initial positions and velociy

index 0 -> m1
index 1 -> m2
index 2 -> m3

45

#so x = [x1,x2,x3]
#Avery will have the initial position of [x[2],y[2],z[2]]
#x = np.array([-1,0,1])
#y = np.array([-1,0,1])
#z = np.array([0,0,0])
#vx = np.array([1,0,-1])
#vy = np.array([-1,0,1])
#vz = np.array([0,0,0])

#Correction for linear momentum
lin_momentum = np.array([0,0,0])
for i in range(3):

lin_momentum = lin_momentum + m[i]*np.array([vx[i],vy[i],vz[i]])

V = lin_momentum / (m[0] + m[1] + m[2])

for i in range(3):
ones = 1/3 * np.array([1.0,1.0,1.0])
vx = vx - V[0]*ones
vy = vy - V[1]*ones
vz = vz - V[2]*ones

#the dataset for the three objects
obj1,obj2,obj3 = [],[],[]
objs = [obj1,obj2,obj3]
for i in range(0,3):

objs[i] = [m[i],x[i],y[i],z[i],vx[i],vy[i],vz[i]]

#Here is all the functions

def setInit(X,Y,Z,Vx,Vy,Vz, reset=True):
"""
Sets the inititial values for the vectors
@param X,Y,Z,Vx,Vy,Vz the new initial values
"""
global x,y,z,vx,vy,vz
x,y,z,vx,vy,vz = np.array(X),np.array(Y),np.array(Z),np.array(Vx),np.

↪→array(Vy),np.array(Vz)
if(reset):

resetVals()

def resetVals():
"""

46

Resets the value in objs vector into the initial values
"""
global objs
global initial_k
for i in range(0,3):

objs[i] = [m[i],x[i],y[i],z[i],vx[i],vy[i],vz[i]]
#objs = list(np.array(objs).copy())
initial_k = constructK()

def r(m1,m2):
"""
The distance between two bodies
@param m1, m2 the two bodies
@return the norm between the two distance vectors
"""
return np.linalg.norm(np.array(objs[m1][1:4]) - np.array(objs[m2][1:4]))

def force(m):
"""
Gravitational force caused by each body

@param: m - The index of the object being calculated on
@return the force on this object
"""
s1 = (m+1)%3
s2 = (m+2)%3

f1 = g*objs[m][0]*objs[s1][0]/(r(m,s1)**3)
f2 = g*objs[m][0]*objs[s2][0]/(r(m,s2)**3)

r1 = np.
↪→array([objs[s1][1]-objs[m][1],objs[s1][2]-objs[m][2],objs[s1][3]-objs[m][3]])

r2 = np.
↪→array([objs[s2][1]-objs[m][1],objs[s2][2]-objs[m][2],objs[s2][3]-objs[m][3]])

return f1*r1 + f2*r2

def a(m):
"""
Acceleration of each body
@param: m - index of the object being calculated on
@return: the acceleration of the object
"""
return force(m)/objs[m][0]

47

#refer back to report pg.6 for the matrix

def constructA():
"""
just contruting A
@return A - refer to chapter 5
"""

c1 = []
for i in range(0,3):

#the force
f = force(i)
for j in range(0,3):

c1.append(-f[j])
for i in range(0,3):

for j in range(4,len(objs[1])):
c1.append(objs[i][0]*objs[i][j])

c2,c3,c4 = [], [], []
for i in range (0,9):

c2.append(0)
c3.append(0)
c4.append(0)

for i in range(0,3):
for j in range (0,3):

if(j==0):
c2.append(objs[i][0])

else:
c2.append(0)

if(j==1):
c3.append(objs[i][0])

else:
c3.append(0)

if(j==2):
c4.append(objs[i][0])

else:
c4.append(0)

c5,c6,c7 = [], [], []

for i in range(0,3):
for j in range (0,3):

if(j==0):
c5.append(objs[i][0])

else:
c5.append(0)

48

if(j==1):
c6.append(objs[i][0])

else:
c6.append(0)

if(j==2):
c7.append(objs[i][0])

else:
c7.append(0)

for i in range (0,9):
c5.append(0)
c6.append(0)
c7.append(0)

c8 =␣
↪→[0,m[0]*objs[0][6],-m[0]*objs[0][5],0,m[1]*objs[1][6],-m[1]*objs[1][5],0,m[2]*objs[2][6],-m[2]*objs[2][5],\

␣
↪→0,-m[0]*objs[0][3],m[0]*objs[0][2],0,-m[1]*objs[1][3],m[1]*objs[1][2],0,-m[2]*objs[2][3],m[2]*objs[2][2]]

c9 =␣
↪→[-m[0]*objs[0][6],0,m[0]*objs[0][4],-m[1]*objs[1][6],0,m[1]*objs[1][4],-m[2]*objs[2][6],0,m[2]*objs[2][4],\

␣
↪→m[0]*objs[0][3],0,-m[0]*objs[0][1],m[1]*objs[1][3],0,-m[1]*objs[1][1],m[2]*objs[2][3],0,-m[2]*objs[2][1]]

c10 =␣
↪→[m[0]*objs[0][5],-m[0]*objs[0][4],0,m[1]*objs[1][5],-m[1]*objs[1][4],0,m[2]*objs[2][5],-m[2]*objs[2][4],0,\

␣
↪→-m[0]*objs[0][2],m[0]*objs[0][1],0,-m[1]*objs[1][2],m[1]*objs[1][1],0,-m[2]*objs[2][2],m[2]*objs[2][1],0]

#my error matrix
#this will be used to correct the states
#its silly

#the 10 rows are the 10 conserved quantity
A = np.array([(c1),(c2),(c3),(c4),(c5),(c6),(c7),(c8),(c9),(c10)])

#now we are "normalizing" the matrix

for i in range(10):
magsqr = np.dot(A[i],A[i])
if magsqr != 0:

A[i] = A[i]/magsqr
return A #now we have 'normalized' A

def constructK():

49

"""
contruct the vector K, the correction for conserved quantities
K = [energy, x momentum, y momentum, z momentum, center of mass x, center of␣

↪→mass y, center of mass z, angular momentum x, angular momentum y, angular␣
↪→momentum z]

@return: The vector K (refer to chapter 5)
"""
PE = 0
for i in range(3):

for j in range(3):
if i != j:

PE += -g*(m[i]*m[j])/np.linalg.norm(np.array(objs[i][1:4]) - np.
↪→array(objs[j][1:4]))

KE = 0
for i in range(3):

KE = (1/2)*m[i]*np.dot(np.array(objs[i][4:]),np.array(objs[i][4:]))
E = KE + PE/4

px,py,pz,comx,comy,comz= 0,0,0,0,0,0
for i in range(3):

px += m[i]*objs[i][4]
py += m[i]*objs[i][5]
pz += m[i]*objs[i][6]
comx += m[i]*objs[i][1]
comy += m[i]*objs[i][2]
comz += m[i]*objs[i][3]

omega =np.array([0,0,0])
for i in range(3):

omega = omega + (objs[i][0]*(np.cross(np.array(objs[i][1:4]),np.
↪→array(objs[i][4:7]))))

K = [E,px,py,pz,comx,comy,comz,omega[0],omega[1],omega[2]]

return np.array(K)

#An important constant initial K
initial_K = constructK()

[]: def update(delay = False):
"""
The update function that updates the values inside objs vectors
"""

#using Euler's method, we can update the values using the method below
#a1=f(x1)
#x2 = x1 + v1t

50

#v2 = v1 + a1t
global initial_K,delta_t
accel = []
for i in range(3):

accel.append(a(i))
#Updating the velocity of each object
m1 -> vx
#update position of each object
for i in range(3):

objs[i][1] = objs[i][4]*delta_t + objs[i][1]
objs[i][2] = objs[i][5]*delta_t + objs[i][2]
objs[i][3] = objs[i][6]*delta_t + objs[i][3]

#update veclocity of each object
for i in range(3):

objs[i][4] = accel[i][0]*delta_t + objs[i][4]
objs[i][5] = accel[i][1]*delta_t + objs[i][5]
objs[i][6] = accel[i][2]*delta_t + objs[i][6]

if delay:
for i in range(10):

A = constructA()

delta_K = (initial_K - constructK())
delta_q = 0.01*np.matmul(np.matrix.transpose(A),delta_K)

objs[0][1:4] += delta_q[:3]
objs[1][1:4] += delta_q[3:6]
objs[2][1:4] += delta_q[6:9]
objs[0][4:7] += delta_q[9:12]
objs[1][4:7] += delta_q[12:15]
objs[2][4:7] += delta_q[15:18]

return delta_q

[]: #this is where the datas gets logged
log = []

resetVals()

temp_k = []
dqLog = []
time = []
t = 0
for i in range(100000):

dq = update(True)
objsLog = list(np.array(objs).copy())
log.append(objsLog)

51

time.append(t)
t+=delta_t
dqLog.append(dq)
temp_k.append(constructK())

[]: objects = list(zip(*log))

#setting up an 2x2 matrix of graph
fig, axs = pyplot.subplots(2,2)

for i in range(3):
obj = objects[i]
state = list(zip(*obj))
x,y,z = state[1],state[2],state[3]
axs[0,0].plot(x,y)
axs[1,0].plot(x,z)
axs[0,1].plot(z,y)

axs[0,0].scatter(x[-1],y[-1])
axs[1,0].scatter(x[-1],z[-1])
axs[0,1].scatter(z[-1],y[-1])

axs[1,1].plot(time, list(zip(*temp_k))[0] - initial_K[0])

axs[0,0].set(xlabel = "x", ylabel = "y",title = "Y V.S X")
axs[1,0].set(xlabel = "x", ylabel = "z",title = "Z V.S X")
axs[0,1].set(xlabel = "z", ylabel = "y",title = "Y V.S Z")
axs[1,1].set(xlabel = "t", ylabel = "E",title = "Energy")
fig.tight_layout()

[]: objects = list(zip(*log))

#set up the 3x3 matrix for linear momentum, average position and angular␣
↪→momentum

fig, axs = pyplot.subplots(3,3)

for j in range(3):
axs[0,j].plot(time, list(zip(*temp_k))[j+1] - initial_K[j+1])
axs[1,j].plot(time, list(zip(*temp_k))[j+4] - initial_K[j+4])
axs[2,j].plot(time, list(zip(*temp_k))[j+7] - initial_K[j+7])

axs[0,0].set(xlabel = "t", ylabel = "x",title = "Linear Momentum")
axs[0,1].set(xlabel = "t", ylabel = "y",title = "Linear Momentum")
axs[0,2].set(xlabel = "t", ylabel = "z",title = "Linear Momentum")
axs[1,0].set(xlabel = "t", ylabel = "x",title = "Average Position")

52

axs[1,1].set(xlabel = "t", ylabel = "y",title = "Average Position")
axs[1,2].set(xlabel = "t", ylabel = "z",title = "Average Position")
axs[2,0].set(xlabel = "t", ylabel = "x",title = "Angular Momentum")
axs[2,1].set(xlabel = "t", ylabel = "y",title = "Angular Momentum")
axs[2,2].set(xlabel = "t", ylabel = "z",title = "Angular Momentum")
fig.tight_layout()

[]: #The code for simulation is now done, the code below are for analyzing chaos

def r(ob, index1, index2):
return np.sqrt((ob[index1][1]-ob[index2][1])**2 +␣

↪→(ob[index1][2]-ob[index2][2])**2 + (ob[index1][3]-ob[index2][3])**2)

def relativeForce(ob, index1, index2):
return ob[index1][0] * ob[index2][0] / ((r(ob, index1, index2))**3) \

* np.array([ob[index2][1] - ob[index1][1], ob[index2][2] -␣
↪→ob[index1][2], ob[index2][3] - ob[index1][3]])

def relativePotential(ob, index1, index2):
return -ob[index1][0] * ob[index2][0] / r(ob, index1, index2)

def linearizBloc(ob, index1, index2):
Fx, Fy, Fz= relativeForce(ob, index1, index2)
U = relativePotential(ob, index1, index2)

F = 3 * np.array([[Fx, Fy, Fz],\
[Fx, Fy, Fz],\
[Fx, Fy, Fz]])

B = F + U * np.identity(3)
B *= 1/r(ob, index1, index2)**2
return B

def linearized(ob):
Q = lambda i,j: linearizBloc(ob, i-1,j-1)
A = np.block([[-Q(1,2)-Q(1,3), Q(1,2) , Q(1,3)],\

[Q(2,1) ,-Q(2,1)-Q(2,3), Q(2,3)],\
[Q(3,1) , Q(3,2) ,-Q(3,1)-Q(3,2)]])

return A

def eigenvalues(ob):
A = linearized(ob)
eigenvalues = np.linalg.eigvals(A)
return np.emath.sqrt(eigenvalues).real

def LyapunovExp(ob):
A = linearized(ob)

53

eigenvalues = np.linalg.eigvals(A)
return max(np.emath.sqrt(eigenvalues).real)

'''--'''

def testEig(mean = 0, sigma = 1, dist = Gaussian, randomize = True):
if(randomize):

randomizeSettings(sigma, mean, dist)
else:

setInit(X = [1,0,0], Y = [0,2,0], Z = [0,0,3], Vx = [0,0,0], Vy =␣
↪→[0,0,0], Vz = [0,0,0])

A = linearized()
print(A)
print('\n--\n')

eigvals = eigenvalues()
print(eigvals)

print('\n--\n')

print(LyapunovExp())

def plotSpectra(batches, batchSize, mean = 0, sigma = 1, dist = Gaussian,␣
↪→normalize = True):

from functools import reduce

N = batches * batchSize
spectra = np.zeros(9)
batch = np.zeros(9)

for i in range(1,N):
if(i % batchSize == 0):

spectra += batch
pyplot.plot(batch)
batch = np.zeros(9)
print(i)

randomizeSettings(sigma, mean)
eigvals = eigenvalues()
if(normalize):

total = sum(eigvals)
else:

total = 1
if(total == 0):

print(eigvals)
else:

batch += np.sort(eigvals / total)

54

spectra /= N
pyplot.show()
pyplot.plot(spectra)

def plotMax(samples, smoothDens, mean = 0, sigma = 1, dist = Gaussian):

vals = []

for i in range(0,samples):
randomizeSettings(sigma, mean, dist)
eigvals = eigenvalues()
vals.append(sum(eigvals) / 9)

vals = np.sort(vals)
#pyplot.plot(vals)
#pyplot.show()

density = smoothDens / (vals[smoothDens:-1]-vals[0:-smoothDens-1])
density /= samples

vals = vals[smoothDens//2:(-smoothDens)//2-1]

return vals, density

[]: #This is our reduced log
r_log = []
r_time = []

new_length = 10000

for i in range(0, len(log), len(log) // new_length):
r_log.append(log[i])
r_time.append(time[i])

print(len(r_log))

[]: #list of eigenvalues per time
eigenvals = []
avg = []
mx = []
dev = []

for i in range(len(r_log)):
eigen_values = eigenvalues(r_log[i])
eigenvals.append(eigen_values)

55

average = sum(eigen_values)/len(eigen_values)
avg.append(average)

maximum = 0
for l in eigen_values:

if(l>maximum):
maximum = l

mx.append(maximum)

deviation = np.sqrt(sum([(l-average)**2 for l in eigen_values])/
↪→len(eigen_values))

dev.append(deviation)

[]: # eigenvalues per size
eig = list(zip(*eigenvals))
for i in range(len(eig)):

pyplot.plot(r_time, [np.exp(-eig[i][j]) for j in range(len(eig[i]))])
#pyplot.show()

[]: # eigenvalues per size
smooth = 500
eig = list(zip(*eigenvals))
for i in range(len(eig)):

l = [sum([eig[i][k+j] for j in range(0,smooth)])/smooth for k in␣
↪→range(len(eig[i])-smooth)]

pyplot.plot(r_time[:-smooth], l)
#pyplot.show()

[]: # eigenvalues per size
eig = list(zip(*eigenvals))
pyplot.plot([sum(eig[i])/len(eig[i]) for i in range(len(eig))])
#pyplot.show()

[]: # Average eigenvalue
pyplot.plot(r_time, avg)

#pyplot.show()

[]: # Average eigenvalue
pyplot.plot(r_time, mx)

#pyplot.show()

[]: # Average eigenvalue
pyplot.plot(r_time, dev)

#pyplot.show()

56

Bibliography

[1] Wikipedia contributors. Homotopical connectivity — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/wiki/Homotopical_connectivity#Definition_

using_holes, 2004. [Online; accessed 02-12-2023].

[2] Gonkee. Chaos Theory: the language of (in)stability. https://www.youtube.com/

watch?v=uzJXeluCKMs, 2021.

[3] nLab authors. bundle. https://ncatlab.org/nlab/show/bundle, December 2023.

Revision 23.

[4] nLab authors. configuration space (physics). https://ncatlab.org/nlab/show/

configuration+space+%28physics%29, December 2023. Revision 9.

[5] nLab authors. connected space. https://ncatlab.org/nlab/show/connected+space,

December 2023. Revision 105.

[6] nLab authors. contractible space. https://ncatlab.org/nlab/show/contractible+

space, December 2023. Revision 19.

[7] nLab authors. homotopy. https://ncatlab.org/nlab/show/homotopy, December

2023. Revision 34.

[8] nLab authors. loop space. https://ncatlab.org/nlab/show/loop+space, December

2023. Revision 41.

[9] nLab authors. Poincaré lemma. https://ncatlab.org/nlab/show/Poincar%C3%A9+

lemma, December 2023. Revision 23.

[10] Frederic Schuller. Lectures on Geometrical Anatomy of Theoretical Physics.

https://youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&

si=KyiLJY6506y5c9PF. [Accessed 25-11-2023].

57

https://en.wikipedia.org/wiki/Homotopical_connectivity#Definition_using_holes
https://en.wikipedia.org/wiki/Homotopical_connectivity#Definition_using_holes
https://www.youtube.com/watch?v=uzJXeluCKMs
https://www.youtube.com/watch?v=uzJXeluCKMs
https://ncatlab.org/nlab/show/bundle
https://ncatlab.org/nlab/revision/bundle/23
https://ncatlab.org/nlab/show/configuration+space+%28physics%29
https://ncatlab.org/nlab/show/configuration+space+%28physics%29
https://ncatlab.org/nlab/revision/configuration+space+%28physics%29/9
https://ncatlab.org/nlab/show/connected+space
https://ncatlab.org/nlab/revision/connected+space/105
https://ncatlab.org/nlab/show/contractible+space
https://ncatlab.org/nlab/show/contractible+space
https://ncatlab.org/nlab/revision/contractible+space/19
https://ncatlab.org/nlab/show/homotopy
https://ncatlab.org/nlab/revision/homotopy/34
https://ncatlab.org/nlab/show/loop+space
https://ncatlab.org/nlab/revision/loop+space/41
https://ncatlab.org/nlab/show/Poincar%C3%A9+lemma
https://ncatlab.org/nlab/show/Poincar%C3%A9+lemma
https://ncatlab.org/nlab/revision/Poincar%C3%A9+lemma/23
https://youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&si=KyiLJY6506y5c9PF
https://youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic&si=KyiLJY6506y5c9PF

