Home Components of Covariant Derivative of a Tensor Field
Post
Cancel

Components of Covariant Derivative of a Tensor Field

Deriving the components of the covariant derivative of an arbitrary tensor field

Let us find the covariant derivative of a rank \((p, q)\) tensor field \(\pmb{\phi}\) by applying the Leibniz law repeatedly:

\[\nabla_\rho \left( \pmb{\phi} \otimes \pmb{\psi} \right) = \left( \nabla_\rho \pmb{\phi} \right) \otimes \pmb{\psi} + \pmb{\phi} \otimes \left( \nabla_\rho \pmb{\psi} \right)\]

Note that we will be implicitly using a Levi-Civita connection on a pseudo-Riemannian manifold.

Derivation

\[\begin{align} \nabla_\rho \pmb{\phi} & = \nabla_\rho \left( \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \right) \\ & = \partial_\rho \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & + \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \left( \nabla_\rho \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \right) \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & + \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \left( \nabla_\rho \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \right) \end{align}\]

In the above, when \(\nabla_\rho\) acts explicitly on the components of \(\pmb{\phi}\), the components behave like scalars, thereby allowing us to replace the covariant derivative with the partial derivative \(\partial_\rho\). Let us now apply the Leibniz law,

\[\begin{align} \nabla_\rho \pmb{\phi} & = \partial_\rho \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ &+ \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \left[ \sum_{i=1}^p \underset{k=1}{\overset{i-1}{\bigotimes}} \partial_{\mu_k} \otimes \left( \nabla_\rho \partial_{\mu_i} \right) \underset{k=i+1}{\overset{p}{\bigotimes}} \partial_{\mu_k} \right] \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & + \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \left[ \sum_{j=1}^q \underset{k=1}{\overset{j-1}{\bigotimes}} \text{d} x^{\nu_k} \otimes \left( \nabla_\rho \text{d}x^j \right) \underset{k=j+1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_k} \right] \end{align}\]

Now, we use the following definitions of the connection coefficients,

\[\begin{align} \nabla_\rho \partial_\mu & = \Gamma^\sigma_{\phantom{\sigma} \rho \mu} \partial_\sigma \\ \nabla_\rho \text{d}x^\nu & = \Gamma^\nu_{\phantom{\nu} \rho \sigma} \text{d}x^\sigma \end{align}\]

as well as the linearity of the tensor product,

\[\begin{align} \bigotimes_k x^\sigma \partial_\sigma & = x^\sigma \bigotimes_k \partial_\sigma \\ \bigotimes_k \theta_\sigma \text{d}x^\sigma & = \theta_\sigma \bigotimes_k \text{d}x^\sigma \end{align}\]

to get:

\[\begin{align} \nabla_\rho \pmb{\phi} & = \partial_\rho \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & + \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \left[ \sum_{i=1}^p \Gamma^{\sigma}_{\phantom{\sigma} \rho \mu_i} \underset{k=1}{\overset{i-1}{\bigotimes}} \partial_{\mu_k} \otimes \partial_\sigma \underset{k=i+1}{\overset{p}{\bigotimes}} \partial_{\mu_k} \right] \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & - \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \left[ \sum_{j=1}^q \Gamma^{\nu_j}_{\phantom{\nu_j} \rho \sigma} \underset{k=1}{\overset{j-1}{\bigotimes}} \text{d} x^{\nu_k} \otimes \text{d}x^\sigma \underset{k=j+1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_k} \right] \\ \\ & = \partial_\rho \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & + \sum_{i=1}^p \Gamma^{\sigma}_{\phantom{\sigma} \rho \mu_i} \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{k=1}{\overset{i-1}{\bigotimes}} \partial_{\mu_k} \otimes \partial_\sigma \underset{k=i+1}{\overset{p}{\bigotimes}} \partial_{\mu_k} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & - \sum_{j=1}^q \Gamma^{\nu_j}_{\phantom{\nu_j} \rho \sigma} \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{k=1}{\overset{j-1}{\bigotimes}} \text{d} x^{\nu_k} \otimes \text{d}x^\sigma \underset{k=j+1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_k} \end{align}\]

Let us exchange the indices \(\sigma\) and \(\mu_i\), and \(\sigma\) and \(\nu_j\) wherever they are dummy indices:

\[\begin{align} \nabla_\rho \pmb{\phi} & = \partial_\rho \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & + \sum_{i=1}^p \Gamma^{\mu_i}_{\phantom{\mu_i} \rho \sigma} \phi^{\mu_1 \dots \mu_{i-1} \sigma \mu_{i+1} \dots \mu_p}_{\phantom{\mu_1 \dots \mu_{i-1} \sigma \mu_{i+1} \dots \mu_p} \nu_1 \dots \nu_q} \underset{k=1}{\overset{i-1}{\bigotimes}} \partial_{\mu_k} \otimes \partial_{\mu_i} \underset{k=i+1}{\overset{p}{\bigotimes}} \partial_{\mu_k} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & - \sum_{j=1}^q \Gamma^{\sigma}_{\phantom{\sigma} \rho \nu_j} \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_{j-1} \sigma \nu_{j+1} \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{k=1}{\overset{j-1}{\bigotimes}} \text{d} x^{\nu_k} \otimes \text{d}x^{\nu_j} \underset{k=j+1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_k} \\ \\ & = \partial_\rho \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & + \sum_{i=1}^p \Gamma^{\mu_i}_{\phantom{\mu_i} \rho \sigma} \phi^{\mu_1 \dots \mu_{i-1} \sigma \mu_{i+1} \dots \mu_p}_{\phantom{\mu_1 \dots \mu_{i-1} \sigma \mu_{i+1} \dots \mu_p} \nu_1 \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \\ & - \sum_{j=1}^q \Gamma^{\sigma}_{\phantom{\sigma} \rho \nu_j} \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_{j-1} \sigma \nu_{j+1} \dots \nu_q} \underset{i=1}{\overset{p}{\bigotimes}} \partial_{\mu_i} \underset{j=1}{\overset{q}{\bigotimes}} \text{d} x^{\nu_j} \end{align}\]

Thus, by factoring out the components, we get,

\[\begin{align} \nabla_\rho \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} & = \partial_\rho \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_q} \\ & + \sum_{i=1}^p \Gamma^{\mu_i}_{\phantom{\mu_i} \rho \sigma} \phi^{\mu_1 \dots \mu_{i-1} \sigma \mu_{i+1} \dots \mu_p}_{\phantom{\mu_1 \dots \mu_{i-1} \sigma \mu_{i+1} \dots \mu_p} \nu_1 \dots \nu_q} \\ & - \sum_{j=1}^q \Gamma^{\sigma}_{\phantom{\sigma} \rho \nu_j} \phi^{\mu_1 \dots \mu_p}_{\phantom{\mu_1 \dots \mu_p} \nu_1 \dots \nu_{j-1} \sigma \nu_{j+1} \dots \nu_q} \end{align}\]

Tuple index notation

To make the above notation less messy, let us use the tuple index notation:

  1. Tuples of indices are replaced by their capital letter. For example, \(\mu_1 \dots \mu_p\) becomes \(M\) and \(\nu_1 \dots \nu_q\) becomes \(N\).

  2. A subset of a tuple, running up to some index \(i-1 \leq p\), i.e. \(\mu_1 \dots \mu_{i-1}\), is written as \(M_i^-\). Similarly, a subset running from an index \(i+1\), \(\mu_{i+1} \dots \mu_p\) is written as \(M_i^+\).

  3. From the above, it follows that we can write \(M\) as \(M_i^- \mu_i M_i^+\).

Using the above notation, we can write the covariant derivative of a tensor, in the component form, as,

\[\nabla_\rho \phi^M_{\phantom{M} N} = \partial_\rho \phi^M_{\phantom{M} N} + \sum_{i=1}^p \Gamma^{\mu_i}_{\phantom{\mu_i} \rho \sigma} \phi^{M_i^- \sigma M_i^+}_{\phantom{M_i^- \sigma M_i^+} N} - \sum_{j=1}^q \Gamma^\sigma_{\phantom{\sigma} \rho \nu_j} \phi^M_{\phantom{M} N_j^- \sigma N_j^+}\]
This post is licensed under CC BY-NC-SA 4.0 by the author.

Algebra Done Tensorially: Part 3 (Complex Numbers and Quaternions)

Conservation of Mass in Classical Mechanics